Читайте также:
|
|
Движение по окружности является достаточно распространенным в окружающем нас мире: при вращении любого твердого тела вокруг фиксированной оси все точки этого тела движутся по окружностям. Так как все окружности подобны, то достаточно описать движение одной из них, чтобы описать вращение всего твердого тела. Кроме того, равномерное движение по окружности является простейшим криволинейным движением.
Пусть материальная точка движется с постоянной по модулю скоростью v по окружности радиуса R. При таком движении направление вектора скорости v постоянно изменяется (рис. 71), следовательно, как и при любом криволинейном движении, движение по окружности есть движение с ускорением.
рис. 71
Рассмотрим изменение вектора скорости тела за малый промежуток времени Δt (рис. 72). Обозначим положение точки, движущейся по окружности радиуса R, в некоторый момент времени Аo.
рис. 72
Вектор скорости vo в этот момент направлен по касательной к окружности, то есть перпендикулярно радиусу ОАo. За время Δt частица переместилась в точку A1, ее скорость v1 изменила направление и стала перпендикулярна радиусу ОА1 (но модуль ее остался неизменным: |vo| = |v1| = v). Для того чтобы вычислить изменение скорости, совместим начало векторов vo и v1. Тогда треугольник, образованный векторами скоростей, подобен треугольнику OAoA1. Из подобия этих треугольников следует
Если рассматривать изменение положения частицы и ее скорости за очень малый промежуток времени, то длина хорды |АoА1| будет очень близка к длине дуги АoА1
S = vΔt,
поэтому
откуда получаем
Таким образом, модуль ускорения точки равен:
Чтобы полностью определить вектор ускорения, необходимо выяснить его направление. Заметим, что при малой величине Δt угол между векторами vo и v1 крайне мал, поэтому можно считать, что вектор изменения скорости направлен перпендикулярно1 как вектору vo, так и вектору v1. Следовательно, вектор ускорения в данном случае направлен к центру окружности.
Вектор ускорения точки при ее равномерном движении по окружности направлен к центру окружности, а его модуль равен v2/R. Такое ускорение называется центростремительным.
Как мы уже отмечали ранее, материальная точка, движущаяся по заданной линии, обладает одной степенью свободы, поэтому ее положение однозначно определяется одной координатой. В случае движения точки по окружности в качестве такой единственной координаты удобно выбрать угол поворота.
№8
Гелиоцентрическая система мира — представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты. Противоположность геоцентрической системе мира. Возникло в античности, но получило широкое распространение с конца эпохи Возрождения.
В этой системе Земля предполагается обращающейся вокруг Солнца за один звёздный год и вокруг своей оси за одни звёздные сутки. Следствием второго движения является видимое вращение небесной сферы, первого — перемещение Солнца среди звёзд по эклиптике. Солнце считается неподвижным относительно звёзд.
№9
Дина́мика (греч. δύναμις — сила) — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, энергия.
Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.
Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. Такие движения подчиняются другим законам.
С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.
В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.
Дата добавления: 2015-01-30; просмотров: 153 | Поможем написать вашу работу | Нарушение авторских прав |