Читайте также:
|
|
Дана плоскость Ах + Ву + Сz +Д = 0, и прямая
Тогда точка пересечения (x, y, z):
36) Квадратичные формы.
Определение: Однородный многочлен второй степени относительно переменных х1 и х2
Ф(х1, х2) = а 11
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1 и х2.
Определение: Однородный многочлен второй степени относительно переменных х1, х2 и х3
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1, х2 и х3.
Рассмотрим квадратичную форму двух переменных. Квадратичная форма имеет симметрическую матрицу А = . Определитель этой матрицы называется определителем квадратичной формы.
Пусть на плоскости задан ортогональный базис . Каждая точка плоскости имеет в этом базисе координаты х1, х2.
Если задана квадратичная форма Ф(х1, х2) = а 11 , то ее можно рассматривать как функцию от переменных х1 и х2.
Дата добавления: 2015-01-30; просмотров: 73 | Поможем написать вашу работу | Нарушение авторских прав |