Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Основные кинематические понятия

Читайте также:
  1. I. Основные богословские положения
  2. II Основные источники загрязнений гидросферы.
  3. II. Основные положения учения Ф. де Соссюра о языке.
  4. II. Основные теории по анализу международных отношений.
  5. II.1.1 Основные источники информации для оценки эффективности строительной организации
  6. III. Назовите основные последствия прямохождения человека (т.е. изменения в строении, физиологии, поведении) в опорно-двигательной системе.
  7. III. Основные положения лингвистической концепции В. фон Гумбольдта.
  8. III. Основные положения синтетической теории эволюции
  9. III. ОСНОВНЫЕ ПРИНЦИПЫ МАТЕРИАЛИСТИЧЕСКОГО УЧЕНИЯ К. МАРКСА И Ф. ЭНГЕЛЬСА.
  10. IV. Основные направления реализации настоящей Стратегии

Кинематика точки

Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Движение любого объекта в кинематике изучают по отношению к некоторой системе отсчета, включающей:

Положение точки определяется набором обобщенных координат — упорядоченным набором числовых величин, полностью описывающих положение тела. В самом простом случае это координаты точки (радиус-вектора) в выбранной системе координат. Наиболее наглядное представление о радиус-векторе можно получить в евклидовой системе координат, поскольку базис в ней является фиксированным и общим для любого положения тела.

Основные кинематические понятия

Материальная точка — тело, размерами которого по сравнению с характерными расстояниями данной задачи можно пренебречь. Так Землю можно считать Материальной Точкой (М. Т.) при изучении её движения вокруг Солнца, пулю можно считать М. Т. при её движении в поле тяжести Земли, но нельзя считать таковой при учете её вращательного движения в стволе винтовки. При поступательном движении в ряде случаев при помощи понятия М. Т. можно описывать и изменение положения более крупных объектов. Так, например, тепловоз, проходящий расстояние 1 метр, может считаться М. Т., поскольку его ориентация относительно системы координат в процессе движения является фиксированной и не влияет на постановку и ход решения задачи.

Радиус-вектор — Вектор, определяющий положение М. Т. в пространстве: . Здесь — координаты радиус-вектора. Геометрически изображается вектором, проведенным из начала координат к материальной точке. Зависимость радиус-вектора (или его координат ) от времени называется законом движения.

Траектория — Годограф радиус-вектора, то есть — воображаемая линия, описываемая концом радиус-вектора в процессе движения. Иными словами, траектория — это линия вдоль которой движется М. Т. При этом закон движения выступает как уравнение, задающее траекторию параметрически. Длину участка траектории между начальным и конечным моментами времени часто называют пройденным расстоянием, длиной пути или вульгарно — путем и обозначают буквой S. При таком описании движения S выступает в качестве обобщенной координаты, а законы движения в этом случае записывается в виде S = S(t) и аналогичны соответствующим законам для координат. Например закон равноускоренного криволинейного движения может быть записан в виде:

,

Где: — модуль начальной скорости, а — Тангенциальное ускорение.

Описание движения при помощи понятия траектории — один из ключевых моментов классической механики. В квантовой механике движения носит бестраекторный характер, а само понятие траектории теряет смысл.

 




Дата добавления: 2015-02-16; просмотров: 37 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.031 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав