Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Система отсчета. Скорость и ускорение как производные радиус-вектора. Нормальная и тангенциальная составляющая вектора ускорения.

Читайте также:
  1. Cудебник 1550 г. Общая характеристика, система и источники
  2. I. Семинар. Тема 1. Предмет, система, задачи судебной медицины. Правовые и организационные основы судебно-медицинской экспертизы, Понятие, объекты, виды, экспертизы
  3. I. СИСТЕМА ПСИХОЛОГИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАНИЯ В СОВРЕМЕННЫХ УСЛОВИЯХ
  4. II. Налоговая система.
  5. II. Скорость света в вакууме одинакова для всех инерциальных систем отсчета. Она не зависит ни от скорости источника, ни от скорости приемника светового сигнала.
  6. IV. Внешняя система
  7. IV. ИЗБИРАТЕЛЬНАЯ СИСТЕМА.
  8. V. Формы и методы контроля, система оценок
  9. V2: 1.1. Денежная система: понятие, структура и типы
  10. V2: 1.7. Современная банковская система Российской Федерации

Механическое движение. Виды мех. движения.

Мех. движение – это изменение с течением времени взаимного расположения тел или их частей. Виды движения: 1). Поступательное – движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению. 2). Вращательное – движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. 3). Колебательное – движение характеризующееся некоторой степенью повторяемости во времени.

Система отсчета. Скорость и ускорение как производные радиус-вектора. Нормальная и тангенциальная составляющая вектора ускорения.

Система отсчёта — это совокупность тела отсчёта, связанной с ним системы координат и системы отсчёта времени, по отношению к которым рассматривается движение (или равновесие) каких-либо материальных точек или тел. 1. Скорость и ускорение материальной точки как производные радиуса-вектора по времени. Положение точки определяется пространственными параметрами: радиус-вектором, декартовыми координатами, дуговой координатой и др. Скорость точки является пространственно - временным параметром. Скоростью точки называется кинематический параметр, характеризующий быстроту изменения положения точки в системе отсчета с течением времени. v=S/t
v=v0+a*t
a=(v-v0)/t Тангенциальное или касательное ускорение (обозначается иногда и т. д., в зависимости от того, какой буквой в конкретном тексте принято обозначать ускорение) направлено по касательной к траектории. Является составляющей вектора ускорения коллинеарной вектору мгновенной скорости. Характеризует изменение скорости по модулю.

Центростремительное или нормальное ускорение (также обозначается иногда и т. д.) возникает (не равно нулю) всегда при движении точки не только по окружности, но и по любой траектории с ненулевой кривизной. Является составляющей вектора ускорения перпендикулярной вектору мгновенной скорости. Характеризует изменение скорости по направлению. Вектор нормального ускорения всегда направлен к мгновенной оси вращения,

а модуль равен

где ω — угловая скорость относительно центра вращения, а r — радиус окружности.

Кроме этих двух компонент, используется также понятие угловое ускорение, показывающее, на сколько изменилась угловая скорость за единицу времени, и, аналогично линейному ускорению, вычисляемое следующим образом:

Направление вектора здесь показывает, увеличивается или уменьшается модуль скорости. Если векторы углового ускорения и угловой скорости сонаправлены (или хотя бы их скалярное произведение положительно), значение скорости растёт, и наоборот.

В частном случае равномерного движения по окружности векторы углового ускорения и тангенциального ускорения равны нулю, а центростремительное ускорение постоянно по модулю.

 

 

Движение материальной точки по окружности кругово́е движе́ние — это вращательное движение материальной точки или тела, когда ось вращения в выбранной системе отсчёта неподвижна и не проходит через центр тела. В этом случае траектория точки или тела является кругом, круговой орбитой. Оно может быть равномерным (с постоянной угловой скоростью) или неравномерным (с переменной угловой скоростью) Для движения по кругу радиуса R длина окружности будет C = 2π R. Если период вращения есть T, то угловая скорость вращения ω будет равна:

Скорость движения объекта равна

Угол поворота θ за время t равен:

3.




Дата добавления: 2015-01-30; просмотров: 108 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав