Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Коэффициент линейной корреляции Пирсона

Читайте также:
  1. K m — коэффициент эластичности предложения
  2. Абсолютные величины и статистические коэффициенты.
  3. Анализ связи парной корреляции. Вычисление параметров уровня регрессии.
  4. Благосостояние населения. Кривая Лоренца. Коэффициент Джини.
  5. В первом случае коэффициент показывает, на сколько возросла бы численность работающих, если бы не было увольнений
  6. Воздействия среды и коэффициент интеллекта
  7. Возмещение потерь лесохозяйственного производства и коэффициенты к ним.
  8. Возмещение потерь сельскохозяйственного производства и коэффициенты к ним.
  9. Вопрос 8.Методы расстановки коэффициентов в окислительно-восстановительных реакциях: ионно- электронный (метод полуреакций) и электронный.
  10. Вопрос Коэффициенты корреляции

Наиболее распространенный коэффициент корреляции. Предназначен для расчета силы и направления линейной зависимости между переменными исследования.

Смысл коэффициента линейной корреляции.

Коэффициент линейной корреляции отражает меру линейной зависимости между двумя переменными. Предполагается, что переменные измерены в интервальной шкале либо в шкале отношений.

Если представить две переменные на координатном поле, то каждая пара значений будет отображать координаты точки в этом поле. Чем ближе точки к усредненной прямой, тем выше коэффициент корреляции (см. следующий рисунок),.

Коэффициент корреляции будет положительным числом, когда при повышении X происходит повышение Y (прямопропорциональная связь), отрицательным при обратнопропорциональной связи. На иллюстрации изображены различные по силе положительные коэффициенты корреляции.

 

На следующей иллюстрации видны специально сгенерированные формы зависимостей и коэффициенты корреляции для них.

Как видим, линейный коэффициент корреляции срабатывает лишь при линейном характере взаимосвязи переменных.

Общая формула:

Где xi и yi - сравниваемые количественные признаки, n – число сравниваемых наблюдений, σx и σy – стандартные отклонения в сопоставляемых рядах.

Для расчетов вручную используется преобразованная формула:

Несмотря на кажущуюся громоздкость формулы, она значительно облегчает ручной расчет.

Иллюстрация расчетов:

Полученный коэффициент корреляции проверяется на значимость с помощью таблицы критических значений. Для этого вычисляем количество степеней свободы df=N-2 и на пересечении с необходимым уровнем значимости находим критическое значение коэффициента. В нашем случае df=8, уровень значимости выбираем 0,1. Получаем критический коэффициент r=0.54. Так как 0,69 > 0,54 делаем вывод о значимой корреляции (r=0,69;p≤0,1).




Дата добавления: 2015-02-16; просмотров: 96 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав