Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Классификации логистических моделей

Читайте также:
  1. APQC структура классификации процессов SM
  2. DSM — система классификации Американской психиатрической ассоциации
  3. II. Типы моделей государства всеобщего благосостояния
  4. Анализ бизнес-процесса(ов) предприятия и построение моделей
  5. Анализ логистических систем
  6. Анализ моделей жизненного цикла.
  7. Анализ основных моделей местного самоуправления в развитых демократиях.
  8. Бессоюзное сложное предложение как тип сложного предложения. Специфика его конструкции и грамматическое значение. Виды связи в БСП и принципы классификации БСП
  9. В ОКОПФ использованы иерархический метод классификации и последовательный метод кодирования.
  10. В основе классификации данных социологического исследования лежит

Понятия модели и моделирования

Моделирование – процесс исследования реальной системы логистики, включающий построение модели, изучение ее свойств и перенос полученных сведений на моделируемую систему. Модель – это некоторый материальный или абстрактный объект, находящийся в определенном объективном соответствии с исследуемым объектом системы логистики, несущий о нем определенную информацию и способный его замещать на определенных этапах познания.

Моделирование основывается на подобии систем или процессов, которое может быть полным или частичным. Основная цель моделирования - прогноз поведения процесса или системы. Ключевой вопрос моделирования «ЧТО БУДЕТ, ЕСЛИ...?»

Исследование и прогнозирование поведения логистических систем на практике осуществляется посредством экономико-математического моделирования, т. е. описания логистических процессов в виде моделей.

Под моделью в данном случае понимается отображение логистической системы (абстрактное или материальное), которое может быть использовано вместо нее для изучения ее свойств и возможных вариантов поведения.

При построении таких моделей необходимо соблюдать следующие требования:

• поведение, структура и функции модели должны быть адекватны моделируемой логистической системе;

• отклонения параметров модели в процессе ее функционирования от соответствующих параметров моделируемой логистической системы не должны выходить за рамки допустимой точности моделирования;

• результаты исследования модели и ее поведения должны выявить новые свойства моделируемой логистической системы, не отраженные в исходном материале, использованном для составления данной модели;

• модель должна быть более удобней, чем ее реальный аналог - логистическая система.

Соблюдение этих требований позволяет реализовать качественно новые возможности моделирования, а именно:

• проведение исследования на этапе проектирования логистической системы для определения целесообразности ее создания и применения;

• проведение исследования без вмешательства в функционирование логистической системы;

• определение предельно допустимых значений объемов материальных потоков и других параметров логистической системы без риска разрушения моделируемой системы.

Классификации логистических моделей

Существенной характеристикой любой модели является степень полноты подобия модели моделируемому объекту. По этому признаку все модели можно разделить на изоморфные и гомо­морфные (рис. 1).

Рис. 1 Классификация моделей

 

Изоморфные модели - это модели, включающие все харак­теристики объекта оригинала, способные, по существу, заме­нить его. Если можно создать и наблюдать изоморфную модель, то наши знания о реальном объекте будут точными. В этом случае мы сможем точно предсказать поведение объекта.

Гомоморфные модели. В их основе лежит неполное, частич­ное подобие модели изучаемому объекту. При этом некоторые стороны функционирования реального объекта не моделируют­ся совсем. В результате упрощается построение модели и интер­претация результатов исследования. При моделировании логи­стических систем абсолютное подобие не имеет места. Поэтому рассматриваться будут лишь гомоморфные мо­дели, не забывая, однако, что степень подобия у них может быть различной.

Следующим признаком классификации является материаль­ность модели. В соответствии с этим признаком все модели можно разделить на материальные и абстрактные.

Материальные модели воспроизводят основные геометриче­ские, физические, динамические и функциональные характери­стики изучаемого явления или объекта. К этой категории отно­сятся, в частности, уменьшенные макеты предприятий оптовой торговли, позволяющие решить вопросы оптимального размеще­ния оборудования и организации грузовых потоков.

Абстрактное моделирование часто является единственным способом моделирования в логистике. Его подразделяют на сим­волическое и математическое.

К символическим моделям относят языковые и зна­ковые.

Языковые модели - это словесные модели, в основе кото­рых лежит набор слов (словарь), очищенных от неоднозначно­сти. Этот словарь называется «тезаурус». В нем каждому слову может соответствовать лишь единственное понятие, в то вре­мя как в обычном словаре одному слову могут соответствовать несколько понятий.

Знаковые модели. Если ввести условное обозначение отдель­ных понятий, т. е. знаки, а также договориться об операциях между этими знаками, то можно дать символическое описание объекта.

Математическим моделированием называется про­цесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математи­ческой моделью. В логистике широко применяются два вида математического моделирования: аналитическое и имитацион­ное.

Аналитическое моделирование - это математический при­ем исследования логистических систем, позволяющий получать точные решения. Аналитическое моделирование осуществляется в следующей последовательности.

Первый этап. Формулируются математические законы, свя­зывающие объекты системы. Эти законы записываются в виде некоторых функциональных соотношений (алгебраических, дифференциальных и т. п.),

Второй этап. Решение уравнений, получение теоретических результатов.

Третий этап. Сопоставление полученных теоретических ре­зультатов с практикой (проверка на адекватность).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы. Однако такие зави­симости удается получить только для сравнительно простых си­стем. При усложнении систем исследование их аналитическими методами наталкивается на определенные трудности, что явля­ется существенным недостатком метода. В этом случае, что­бы использовать аналитический метод, необходимо существенно упростить первоначальную модель, чтобы иметь возможность изучить хотя бы общие свойства системы.

К достоинствам аналитического моделирования относят большую силу обобщения и многократность использова­ния.

Другим видом математического моделирования является имитационное моделирование.

Как уже отмечалось, логистические системы функциониру­ют в условиях неопределенности окружающей среды. При упра­влении материальными потоками должны учитываться фак­торы, многие из которых носят случайный характер. В этих условиях создание аналитической модели, устанавливаю­щей четкие количественные соотношения между различными составляющими логистических процессов, может оказаться либо невозможным, либо слишком дорогим.

При имитационном моделировании закономерности, опреде­ляющие характер количественных отношений внутри логисти­ческих процессов, остаются непознанными. В этом плане ло­гистический процесс остается для экспериментатора «черным ящиком».

Процесс работы с имитационной моделью, в первом прибли­жении, можно сравнить с настройкой телевизора рядовым теле­зрителем, не имеющим представления о принципах работы этого аппарата. Телезритель просто вращает разные ручки, добиваясь четкого изображения, не имея при этом представления о том, что происходит внутри «черного ящика».

Точно так же экспериментатор «вращает ручки» имитаци­онной модели, меняя при этом условия протекания процесса и наблюдая получаемый результат. Определение условий, при ко­торых результат удовлетворяет требованиям, является целью работы с имитационной моделью.

Имитационное моделирование включает в себя два основных процесса: первый — конструирование модели реальной системы, второй — постановка экспериментов на этой модели.

При этом могут преследоваться следующие цели: а) понять поведение логистической системы; б) выбрать стратегию, обес­печивающую наиболее эффективное функционирование логисти­ческой системы.

Как правило, имитационное моделирование осуществляется с помощью компьютеров.

Условия, при которых рекомендуется применять имитацион­ное моделирование, приведены в работе Р. Шеннона «Имитаци­онное моделирование систем — наука и искусство». Перечи­слим основные из них.

1. Не существует законченной математической постановки данной задачи, либо еще не разработаны аналитические методы решения сформулированной математической модели.

2. Аналитические модели имеются, но процедуры столь слож­ны и трудоемки, что имитационное моделирование дает более простой способ решения задачи.

3. Аналитические решения существуют, но их реализация не­возможна вследствие недостаточной математической подготовки имеющегося персонала.

Таким образом, основным достоинством имитационного мо­делирования является то, что этим методом можно решать более сложные задачи. Имитационные модели позволяют достаточ­но просто учитывать случайные воздействия и другие факто­ры, которые создают трудности при аналитическом исследова­нии.

При имитационном моделировании воспроизводится процесс функционирования системы во времени. Причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во вре­мени. Модели не решают, а осуществляют прогон программы с заданными параметрами, меняя параметры, осуществляя прогон за прогоном.

Имитационное моделирование имеет ряд существенных не­достатков, которые также необходимо учитывать.

1. Исследования с помощью этого метода обходятся дорого.

Причины:

— для построения модели и экспериментирования на ней не­обходим высококвалифицированный специалист-программист;

— необходимо большое количество машинного времени, по­скольку метод основывается на статистических испытаниях и требует многочисленных прогонов программ;

— модели разрабатываются для конкретных условий и, как правило, не тиражируются.

2. Велика возможность ложной имитации. Процессы в логистических системах носят вероятностный характер и подда­ются моделированию только при введении определенного рода допущений. Например, разрабатывая имитационную модель товароснабжения района и принимая среднюю скорость движения автомобиля на маршруте, равную 25 км/ч, мы исходим из до­пущения, что дорожные условия хорошие. В действительности погода может испортиться и, в результате наступившего гололеда, скорость на маршруте упадет до 15 км/ч. Реальный процесс пойдет иначе.

Описание достоинств и недостатков имитационного модели­рования можно завершить словами Р. Шеннона: «Разработка и применение имитационных моделей в большей степени искус­ство, чем наука. Следовательно, успех или неудача в большей степени зависит не от метода, а от того, как он применяется».

Классифицировать логистические модели можно по следующим признакам.

 

Признак классификации Виды моделей Описание
Аспект моделирования Функциональное Описывает совокупность функций, функциональных подсистем, их взаимосвязи
Информационное Отражает состав и взаимосвязи между элементами системы
Поведенческое (событийное) Описывает динамику функционирования с помощью понятий: состояние системы, событие, переход из одного состояния в другое, условия перехода, последовательность событий
Соответствие оригиналу Полное Получают изоморфные модели, находящиеся в строгом соответствии с оригиналом и дающие о нем исчерпывающую информацию
Приближенное Получают гомоморфные модели путем сознательного огрубления исследуемого процесса, значительного сокращения числа факторов, отбора среди них наиболее существенных
Форма реализации Реальное Используется возможность исследования характеристик либо на реальном объекте, либо на его части
Мысленное Применяется, когда модели не реализуемы в заданном интервале времени, либо отсутствуют условия для их физического создания
Наличие управляемых переменных Конструктивное Включение в модель управляемых переменных, что позволяет находить эффективное управляющее воздействие
Дескриптивные (описательные, концептуальные) Предварительное содержательное описание исследуемого объекта, которое не содержит управляемых переменных, играет вспомогательную роль, предшествует построению конструктивной модели (например, математической). Модели имеют вид схем, отражающих наши представления о том, какие переменные наиболее существенны и как они связаны между собой
Изменение во времени Статическое Служит для описания состояния объекта в фиксированный момент времени
Динамическое Служит для исследования объекта во времени
Степень определенности Детерминированное Отображение процессов, в которых все параметры и воздействия предполагаются не случайными, а причинно обусловленными
Стохастическое Учитываются вероятностные процессы и события
Способ реализации Наглядное Строятся модели геометрического подобия (изобразительные модели): чертежи, схемы, диаграммы, карты, макеты самолетов, модели солнечной системы в планетариях, модели атома и т.п.
Математическое (символическое) Процесс установления соответствия реальному объекту некоторого набора символов и выражений, например математических. Математические модели наиболее удобны для исследования и количественного анализа, позволяют не только получить решение для конкретного случая, но и определить влияние параметров системы на результат решения
Имитационное Воспроизведение (с помощью ЭВМ) алгоритма функционирования сложных объектов во времени, поведения объекта. Имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания. Это искусственный эксперимент, при котором вместо проведения натурных испытаний с реальным объектом проводятся опыты на математических моделях
Натурное Проведение исследования на реальном исследуемом объекте
Физическое Исследования проводятся на установках, которые сохраняют физическую природу исследуемого объекта, но отличаются от него размерами, формой и другими характеристиками (аэродинамическая труба, в которой отрабатываются свойства летательного аппарата)
Аналоговое Набор одних свойств используется для отображения свойств другой физической природы: гидравлическая система как аналог электрической или транспортной; электрическая система как аналог механической, транспортной систем


Этапы построения математических моделей

Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата. Выделяют следующие основные этапы построения моделей.

1. Содержательное описание моделируемого объекта. Словесно описывается объект моделирования, цели его функционирования, среда, в которой он функционирует, выявляются отдельные элементы, возможные состояния, характеристики объекта и его элементов, определяются взаимосвязи между элементами, состояниями, характеристиками. Такое предварительное, приближенное представление объекта исследования называется концептуальной моделью. Этот этап является основой для последующего формального описания объекта.

2. Формализация операций. На основе содержательного описания определяется и анализируется исходное множество характеристик объекта, выделяются наиболее существенные из них. Затем выделяют управляемые и неуправляемые параметры, вводят символьные обозначения. Определяется система ограничений, строится целевая функция модели. Таким образом, происходит замена содержательного описания формальным (символьным, упорядоченным).

3. Проверка адекватности модели. Исходный вариант модели необходимо проверить по следующим аспектам:

1) все ли существенные параметры включены в модель?

2) нет ли в модели несущественных параметров?

3) правильно ли отражены связи между параметрами?

4) правильно ли определены ограничения на значения параметров?

Главным путем проверки адекватности модели исследуемому объекту выступает практика. После предварительной проверки приступают к реализации модели и проведению исследований. Полученные результаты моделирования подвергаются анализу на соответствие известным свойствам исследуемого объекта. По результатам проверки модели на адекватность принимается решение о возможности ее практического использования или о проведении корректировки.

4. Корректировка модели. На этом этапе уточняются имеющиеся сведения об объекте и все параметры построенной модели. Вносятся изменения в модель, и вновь выполняется оценка адекватности.

5. Оптимизация модели. Сущность оптимизации (улучшения) моделей состоит в их упрощении при заданном уровне адекватности. В основе оптимизации лежит возможность преобразования моделей из одной формы в другую. Основными показателями, по которым возможна оптимизация модели, являются время и затраты средств для проведения исследований и принятия решений с помощью модели.

 

 

Заключение

Описание достоинств и недостатков моделирования можно завершить словами Р. Шеннона: «Разработка и применение моделей в большей степени искусство, чем наука. Следовательно, успех или неудача в большей степени зависит не от метода, а от того, как он применяется».

И в завершение хочется отметить, что цель моей работы была достигнута. Определено понятие модели и моделирования, обозначены классификации моделей, их описание и виды, а также выделены этапы построения математических моделей.

 




Дата добавления: 2015-05-05; просмотров: 117 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Понятие инвестиционной деятельности предприятия| Методы проектирования проектной линии.

lektsii.net - Лекции.Нет - 2014-2025 год. (0.157 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав