Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Приведение квадратичных форм к каноническому

Читайте также:
  1. Внутренний класс и приведение к базовому типу
  2. Интегралы от квадратичных иррациональностей
  3. Приведение в равновесие культуры и Тени.
  4. Приведение в соответствие ресурсов GE
  5. Приведение к дочернему типу и идентификация типов во время работы
  6. Приведение примеров
  7. Приведение тепловоза в движение
  8. Приведение типа (тип).
  9. Проверка перед приведением типа

виду.

 

Рассмотрим некоторое линейное преобразование А с матрицей .

Это симметрическое преобразование можно записать в виде:

y1 = a11x1 + a12x2

y2 = a12x1 + a22x2

где у1 и у2 – координаты вектора в базисе .

Очевидно, что квадратичная форма может быть записана в виде

Ф(х1, х2) = х1у1 + х2у2.

 

Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х1 и х2 – скалярное произведение .

Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.

Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:

.

 

При переходе к новому базису от переменных х1 и х2 мы переходим к переменным и . Тогда:

 

Тогда .

 

Выражение называется каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.

Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.

 

Пример. Привести к каноническому виду квадратичную форму

Ф(х1, х2) = 27 .

 

Коэффициенты: а11 = 27, а12 = 5, а22 = 3.

Составим характеристическое уравнение: ;

(27 - l)(3 - l) – 25 = 0

l2 - 30l + 56 = 0

l1 = 2; l2 = 28;

 

 

 

Пример. Привести к каноническому виду уравнение второго порядка:

17x2 + 12xy + 8y2 – 20 = 0.

 

Коэффициенты а11 = 17, а12 = 6, а22 = 8. А =

Составим характеристическое уравнение:

(17 - l)(8 - l) - 36 = 0

136 - 8l - 17l + l2 – 36 = 0

l2 - 25l + 100 = 0

l1 = 5, l2 = 20.

Итого: - каноническое уравнение эллипса.

 

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l1 = 2, l2 = 6.

Найдем координаты собственных векторов:

полагая m1 = 1, получим n1 =

полагая m2 = 1, получим n2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l1 = 1, l2 = 11.

Найдем координаты собственных векторов:

полагая m1 = 1, получим n1 =

полагая m2 = 1, получим n2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

 

 

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

4ху + 3у2 + 16 = 0

 

Коэффициенты: a11 = 0; a12 = 2; a22 = 3.

Характеристическое уравнение:

Корни: l1 = -1, l2 = 4.

 

Для l1 = -1 Для l2 = 4

 

m1 = 1; n1 = -0,5; m2 = 1; n2 = 2;

 

= (1; -0,5) = (1; 2)

Получаем: -каноническое уравнение гиперболы.

 

 

 

При использовании компьютерной версии “ Курса высшей математики ” возможно запустить программу, которая решает рассморенные выше примеры для любых начальных условий.

 

 

Комплексные числа.

 

Определение. Комплексным числом z называется выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением:

При этом число a называется действительной частью числа z (a = Re z), а b - мнимой частью (b = Im z).

Если a =Re z =0, то число z будет чисто мнимым, если b = Im z = 0, то число z будет действительным.

 




Дата добавления: 2015-09-11; просмотров: 91 | Поможем написать вашу работу | Нарушение авторских прав

Пусть заданы векторы в прямоугольной системе координат | Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор . | Кривая второго порядка может быть задана уравнением | Определение. Точка О называется полюсом, а луч l – полярной осью. | Уравнение прямой в пространстве по точке и | Уравнение прямой в пространстве, проходящей | Условия параллельности и перпендикулярности | Условия параллельности и перпендикулярности | Условия параллельности и перпендикулярности | Связь сферической системы координат с |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав