Читайте также:
|
|
Этот метод из-за своей простоты нашел очень широкое применение в практике и является одним из основных методов контроля качества изоляции.
Известно, что любая изоляция имеет конечную величину сопротивления, хотя и достаточно большую. Поэтому при приложении напряжения через изоляцию, кроме токов на зарядку геометрической емкости и абсорбционных токов, течет ток, определяемый электропроводностью диэлектрика. С увеличением дефектности изоляции ток утечки возрастает. Это явление и положено в основу данного метода.
Сопротивление изоляции равно:
.
На постоянном напряжении будет изменяться во времени, поскольку на величину тока будут влиять процессы медленной поляризации. На рис. 2.10 показан характер изменения тока через изоляцию и сопротивление изоляции от времени.
Рис. 2.10. Изменение тока утечки и сопротивления изоляции во времени
Опытным путем установлено, что для большинства изоляционных конструкций время достижения установившегося значения тока утечки I меньше 1 мин., т. е. к этому времени после приложения напряжения R также достигнет установившегося значения.
Резкое падение показывает на далеко зашедшее развитие дефекта в изоляции, или на наличие сквозного проводящего пути, или пробоя. Обычно суждение об изоляции составляется на основании сравнения с результатом предыдущих измерений
или заводских данных.
Измерение сопротивления изоляции производится с помощью специальных приборов — мегаомметров, у которых шкала проградуирована в МОм или кОм.
Конструкции отечественных мегаомметров для измерения различны. Наибольшее применение нашли индукторные (с ручным приводом) типа М-110 на 500 В, МОМ-5 на 1000 В и МС-06 на 2500. В настоящее время находят широкое применение электронные мегаомметры, например, типа ЭС0210.
2.6.3. Измерение tg
Диэлектрические потери в изоляции характеризуются углом диэлектрических потерь. Если обратиться к рис. 2.11, то tg определяется отношением активной составляющей тока в диэлектрике к емкостной составляющей
tg ,
где Ia — активная составляющая тока через диэлектрик; Ic — реактивная составляющая тока через диэлектрик.
Рис.2.11. Векторная диаграмма токов через диэлектрик с потерями
Измерение величины tg , а не величины самих диэлектрических потерь:
P = U Ic
tg
=
UC tg
.
имеет следующие преимущества:
1) величина tg как характеристика материала не зависит от размеров объекта, но позволяет обнаружить возникающие в изоляции дефекты, особенно если они распространены по всему объему;
2) величина tg может быть непосредственно измерена мостом переменного тока.
Метод контроля изоляции путем измерения угла диэлектрических потерь является самым эффективным и распространенным. Он позволяет выявить следующие дефекты: увлажнение, воздушные (газовые) включения с процессами ионизации, неоднородности и загрязнения и др.
Измерения tg ведутся при напряжении U<10 кВ и частоте 50 Гц при помощи высоковольтных мостовых схем (мост Шеринга). Оценка состояния изоляции по значению tg
предусматривается нормативами почти для всех видов изоляции. В зависимости от конструктивных особенностей объекта (заземлен один электрод или нет) используется нормальная или перевернутая схемы моста Шеринга.
По нормальной схеме обычно выполняются измерения в лабораториях, а также измерения междуфазной изоляции (кабель, трансформатор и т.п.).
Выпускаются мосты типа МДП, которые позволяют измерять tg при емкостях объектов от 40 до 20000 пФ.
При работе с перевернутой схемой нужно иметь в виду, что от измерительных ветвей и конденсатора С3 (измеряемый объект) идут проводники, находящиеся под высоким напряжением.
Для измерений по перевернутой схеме применяется малогабаритный переносной мост МД-16, который позволяет измерять tg при емкостях объекта от 30 до 40000 пФ.
Дата добавления: 2014-12-20; просмотров: 115 | Поможем написать вашу работу | Нарушение авторских прав |