Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Дисперсия. Свойства дисперсии

Читайте также:
  1. I Кислотно-основные свойства.
  2. I Кислотные и основные свойства
  3. I. Основные свойства живого. Биология клетки (цитология).
  4. I. ПОЧЕМУ МЫ ДОЛЖНЫ ИЗУЧАТЬ СТОРОНЫ И СВОЙСТВА ПЕДАГОГИЧЕСКОГО ПРОЦЕССА?
  5. I. ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА МИОКАРДА
  6. А ты волшебник? Проверь себя! 42 свойства волшебника!
  7. Актуальность и проблематика детектирования NO, продуцируемого в организме. Спектральные свойства NO, требуемые аналитические параметры и выбор аналитического диапазона.
  8. Алгоритм и его свойства
  9. Алгоритм и требования к алгоритму (свойства алгоритма )
  10. Алгоритм. Свойства алгоритма. Способы записи алгоритма

Дисперсия – средний квадрат отклонений значений признака от их средней величины.

Свойства:

10 Дисперсия постоянной величины равна 0

20 Уменьшение всех значений признака на одну и ту же величину А не изменяет величину дисперсии

30 Уменьшение всех значений признака в В раз уменьшает дисперсию в В2 раз, а среднее квадратическое отклонение в В раз

Таким образом все значения признака можно разделить на какую-то постоянную величину, затем определить среднее квабратическое отклонение и умножить его на эту постоянную величину

40 Средний квадрат отклонений от любой величины А в той или иной степени отличающейся от средней арифметической всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической

При этом средний квадрат отклонений будет больше на определенную величину (на квадрат разности средней и условно взятой величины)

50 Дисперсия имеет свойство минимальности; если А=0, то дисперсия вычисляется по формуле:

Между средним линейным отклонением и средним квадратическим отклонением существует примерное соотношение. в том случае, если фактическое распределение близко к нормальному распределению. Как правило

В условиях нормального распределения существует зависимость между величиной среднего квадратического отклонения и количеством наблюдений.

Правило трех

1) В пределах располагается 68,3% количества наблюдений

2) В пределах находится 95,4% количества наблюдений

3) В пределах находится 99,7% количества наблюдений

Отклонения считается максимально возможными.

 




Дата добавления: 2014-12-23; просмотров: 97 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.039 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав