Читайте также:
|
|
В качестве измерительного органа для АВР служат реле минимального напряжения, реле контроля фаз или другой прибор контроля качества питающего напряжения, подключенные к защищаемым участкам. В случае снижения напряжения на защищаемом участке электрической сети реле дает сигнал в схему АВР. Однако условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворен еще ряд условий:
После проверки выполнения всех этих условий логическая часть АВР дает сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Межлинейный выключатель включается после того, как вводной выключатель отключился.
Устройства АВР обеспечивают контроль параметров напряжения на вводах по величине (минимально и максимально допустимые значения), по исчезновению хотя бы одной из фаз питающего напряжения и по чередованию фаз.
Устройства обеспечивают электрическую блокировку одновременного включения автоматических выключателей на вводах при работе на один фидер; блокировку включения секционного автомата в схемах с секционированием. При необходимости устройства АВР могут комплектоваться механической блокировкой.
Устройства АВР могут размещаться в отдельных малогабаритных шкафах, полногабаритных шкафах, 2- и 3-секционных шкафах (в зависимости от мощности энергопотребления), а также в шкафах вводных, вводно-учетных и распределительных.
Таблица 1. Варианты примерных структурных решений реализации АВР
![]() | Переключение с основного на резервный ввод осуществляется электромагнитными контакторами, получающими управляющий сигнал от реле контроля фаз РКФ, установленного на вводе 1 (рис. 1). Схемой предусмотрено автоматическое переключение питания с рабочего на резервный ввод с последующим возвратом в исходное состояние при восстановлении напряжения на рабочем вводе. Для защиты вводов в схеме предусмотрены автоматические выключатели 1QF и 2QF. Применяется для бесперебойного питания одной линии нагрузки электроприемников 1 категории. |
![]() | Переключение с основного на резервный ввод осуществляется автоматическими выключателями с электроприводами, получающими управляющий сигнал от реле контроля фаз РКФ, установленных на обоих вводах (рис. 2). Схемой предусмотрено автоматическое переключение питания с рабочего на резервный ввод с последующим возвратом в исходное состояние при восстановлении напряжения на рабочем вводе. |
![]() | В нормальном режиме работы каждый вывод подключен к соответствующему вводу питания через контакторы 1КМ и 2КМ(рис.3). При пропадании питания на основном вводе, включается секционный контактор 3КМ и секция нагрузки подключается к противоположному вводу. Контроль напряжения на вводах осуществляется при помощи реле контроля фаз. Возможно автоматическое переключение питания секции с последующим возвратом в исходное состояние либо без автоматического возврата (возврат осуществляется вручную) при восстановлении напряжения на рабочем вводе. Для защиты вводов в схеме предусмотрены автоматические выключатели 1QF и 2QF. Применяется для бесперебойного питания двух линий нагрузки от двух вводов. |
![]() | В нормальном режиме работы каждый вывод подключен к соответствующему вводу питания через автоматические выключатели 1QF и 2QF (рис. 4). При пропадании питания на основном вводе, включается секционный контактор 3QF и секция нагрузки подключается к противоположному вводу. Контроль напряжения на вводах осуществляется при помощи реле контроля фаз. Возможно автоматическое переключение питания секции с последующим возвратом в исходное состояние либо без автоматического возврата (возврат осуществляется вручную) при восстановлении напряжения на рабочем вводе. Применяется для бесперебойного питания двух линий нагрузки от двух вводов. |
![]() | В нормальном режиме работы каждый вывод подключен к соответствующему вводу питания через контакторы 1КМ1 и 2КМ2 (рис. 5). При пропадании питания на одном из вводов, включается секционный контактор 1КМ2 (2КМ1) и секция нагрузки подключается к противоположному вводу. Контроль напряжения на вводах осуществляется при помощи реле контроля фаз. Возможно автоматическое переключение питания секции с последующим возвратом в исходное состояние либо без автоматического возврата (возврат осуществляется вручную) при восстановлении напряжения на рабочем вводе. Для защиты вводов в схеме предусмотрены автоматические выключатели 1QF и 2QF. Применяется для бесперебойного питания двух линий нагрузки от двух вводов. Схема обеспечивает возможность секционирования силового оборудования, что обеспечивает повышенную безопасность. |
![]() | В нормальном режиме работы каждый вывод подключен к соответствующему вводу питания через автоматические выключатели 1QF1 и 2QF2 (рис. 6). При пропадании питания на основном вводе, включается секционный контактор 1QF2 (2QF1), и секция нагрузки подключается к противоположному вводу. Контроль напряжения на вводах осуществляется при помощи реле контроля фаз. Возможно автоматическое переключение питания секции с последующим возвратом в исходное состояние либо без автоматического возврата (возврат осуществляется вручную) при восстановлении напряжения на рабочем вводе. Применяется для бесперебойного питания двух линий нагрузки от двух вводов. Схема обеспечивает возможность секционирования силового оборудования, что обеспечивает повышенную безопасность. |
Практическая работа №9
Изучение схем автоматического повторного включения
Значительная часть коротких замыканий (КЗ) на воздушный линиях электропередачи (ВЛ), вызванных перекрытием изоляции, схлестыванием проводов и другими причинами, при достаточно быстром отключении повреждений релейной защитой самоустраняется. При этом электрическая дуга, возникшая в месте КЗ, гаснет, не успевая вызвать существенных разрушений, препятствующих обратному включению линии под напряжение. Такие самоустраняющиеся повреждения принято называть неустойчивыми. Статистические данные о повреждаемости ВЛ за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50–90 %.
Поскольку отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения имеют неустойчивый характер, обычно при ликвидации аварийного нарушения режима оперативный персонал производит опробование ВЛ обратным включением под напряжение. Эту операцию называют повторным включением. Линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
Реже на ВЛ возникают такие повреждения, как обрывы проводов, тросов или гирлянд изоляторов, падение или поломка опор и т. д. Такие повреждения не могут самоустраниться, поэтому их называют устойчивыми. При повторном включении ВЛ, на которой произошло устойчивое повреждение, вновь возникает КЗ, и она вновь отключается защитой. Поэтому повторные включения линий при устойчивых повреждениях называются неуспешными.
Для ускорения повторного включения линий и уменьшения времени перерыва электроснабжения потребителей широко используются специальные устройства автоматического повторного включения (АПВ).
Время действия АПВ обычно составляет от 0,5 до нескольких секунд.
Согласно Правилам устройств электроустановок (ПУЭ) обязательно применение АПВ на всех воздушных и смешанных (кабельно-воздушных) линиях напряжением выше 1 кВ. Автоматическое повторное включение восстанавливает нормальную схему сети также и в тех случаях, когда отключение выключателя происходит вследствие ошибок персонала или ложного действия релейной защиты.
Как показывает опыт эксплуатации, успешность действия АПВ на воздушных линиях 110–220 кВ достигает 75–80 %, а на линиях сверхвысокого напряжения 330 кВ 65–70 %, 500–750 кВ – около 50 %. Наиболее эффективно применение АПВ на линиях с односторонним питанием, так как в этих случаях каждое успешное действие АПВ восстанавливает питание потребителей и предотвращает аварию.
Неустойчивые КЗ часто возникают не только на ВЛ, но и на шинах подстанций. Поэтому на подстанциях, оборудованных быстродействующей защитой шин, также применяется АПВ, которое производит повторную подачу напряжения на шины в случае их отключения релейной защитой; АПВ шин имеет высокую эффективность, поскольку каждый случай успешного действия предотвращает аварийное отключение целой подстанции или ее части.
Устройствами АПВ оснащаются также все одиночно работающие трансформаторы мощностью 1000 кВА и более и трансформаторы меньшей мощности, питающие ответственную нагрузку. Устройства АПВ на трансформаторах выполняются так, чтобы их действие происходило при отключении трансформатора максимальной токовой защитой.
Повторное включение при повреждении самого трансформатора, когда он отключается защитами от внутренних повреждений, как правило, не производится. Успешность действия устройств АПВ трансформаторов и шин так же высока, как и устройств АПВ ВЛ, и составляет 70–90 %.
В ряде случаев АПВ используется на кабельных и смешанных кабельно-воздушных тупиковых линиях 6–10 кВ. При этом несмотря на то что повреждения кабелей бывают, как правило, устойчивыми, успешность АПВ составляет 40–60 %. Это объясняется тем, что АПВ восстанавливает питание потребителей при неустойчивых повреждениях на шинах подстанций, при отключении линий вследствие перегрузки, при ложных и неселективных действиях релейной защиты. Применение АПВ позволяет в ряде случаев упростить схемы релейной защиты и ускорить отключение КЗ в сетях, что также является положительным качеством этого вида автоматики.
Требования к схемам автоматики повторного включения и их классификация
В эксплуатации получили применение следующие виды устройств АПВ: трехфазные, осуществляющие повторное включение трех фаз выключателя после их отключения релейной защитой; однофазные, осуществляющие включение одной фазы выключателя, отключенной релейной защитой при однофазном КЗ; комбинированные, осуществляющие включение трех фаз (при междуфазных повреждениях) или одной фазы (при однофазных КЗ).
Трехфазные устройства АПВ в свою очередь подразделяются на несколько видов: простые (ТАПВ), быстродействующие (БАПВ), с проверкой наличия напряжения (АПВНН), с ожиданием синхронизма (АПВОС), с улавливанием синхронизма (АПВУС) и др.
По виду оборудования, на которое действием устройств АПВ повторно подается напряжение, различают АПВ линий, АПВ шин, АПВ трансформаторов.
По числу циклов (кратности действия) различают АПВ однократного действия и АПВ многократного действия.
Устройства АПВ, выполненные с помощью специальных релейных схем, называют электрическими, а встроенные в грузовые или пружинные приводы – механическими.
Схемы АПВ в зависимости от конкретных условий могут существенно отличаться одна от другой. Однако все они должны удовлетворять следующим основным требованиям.
1. Схемы АПВ должны приходить в действие при аварийном отключении выключателя (или выключателей), находившегося в работе.
В некоторых случаях схемы АПВ должны удовлетворять дополнительным требованиям, при выполнении которых разрешается пуск АПВ: например при наличии или, наоборот, при отсутствии напряжения, при наличии синхронизма, после восстановления частоты и т. д.
2. Схемы АПВ не должны приходить в действие при оперативном отключении выключателя персоналом, а также в тех случаях, когда выключатель отключается релейной защитой сразу после его включения персоналом (т. е. при включении выключателя на КЗ), поскольку повреждения в этом случае обычно бывают устойчивыми. В схемах АПВ должна также предусматриваться возможность запрета действия АПВ при срабатывании отдельных защит. Так, например, как правило, не допускается действие АПВ трансформаторов при внутренних повреждениях в них, когда срабатывает газовая или дифференциальная защита.
В отдельных случаях не допускается действие АПВ линий при срабатывании дифференциальной защиты шин.
3. Схемы АПВ должны обеспечивать определенное количество повторных включений, т. е. действие с заданной кратностью. Наибольшее распространение получило АПВ однократного действия. Применяются также АПВ двукратного, а в некоторых случаях и трехкратного действия.
4. Время действия, как правило, должно быть минимально возможным, для того чтобы обеспечить быструю подачу напряжения потребителям и восстановление нормального режима работы. Наименьшая выдержка времени, с которой производится АПВ на линиях с односторонним питанием, принимается 0,3–0,5 с. Вместе с тем в некоторых случаях, когда наиболее вероятны повреждения, вызванные набросами и касаниями проводов передвижными механизмами, целесообразно для повышения успешности АПВ принимать выдержки времени порядка нескольких секунд.
5. Схемы АПВ должны обеспечивать автоматический возврат в исходное положение готовности к новому действию после включения в работу выключателя, на который действует АПВ.
Практическая работа №10
Изучение схем автоматической частотной разгрузки
Устройства АЧР, используемые для ликвидации аварийного дефицита мощности в энергосистемах, подразделяются на категории.
Первая категория автоматической частотной разгрузки – АЧР1 – быстродействующая (1 = 0,1–0,3 с) с уставками срабатывания от 48,5 до 46,5 Гц. Назначение очередей АЧР1 – не допустить глубокого снижения частоты в первое время развития аварии. Уставки срабатывания отдельных очередей АЧР1 отличаются одна от другой на 0,1 Гц.
Мощность, подключаемая к АЧР1, примерно равномерно распределяется между очередями.
Вторая категория автоматической частотной разгрузки – AЧPII – предназначена для восстановления частоты до нормального значения, если она длительно остается пониженной, или, как говорят, «зависает» на уровне около 48 Гц. Вторая категория AЧPII работает после отключения части потребителей от АЧР1, когда снижение частоты прекращается и она устанавливается на уровне 47,5–48,5 Гц.
Кроме двух категорий автоматической частотной разгрузки – АЧР1 и AЧPII, – в эксплуатации применяется также дополнительная разгрузка. Такие устройства АЧР используются для осуществления местной разгрузки при возникновении большого дефицита активной мощности в районе энергосистемы или на отдельной подстанции, когда суммарной мощности потребителей, подключенных к очередям АЧР1 и AЧPII, оказывается недостаточно для ликвидации возможного дефицита активной мощности в этом районе.
Схемы устройства АЧР автоматики частотной разгрузки и автоматики повторного включения
На рис. 1, а приведена схема совмещенных АЧР1 и AЧPII. Действие АЧР осуществляется с помощью реле частоты KF1, промежуточного реле KL1 и выходного реле KL2. Устройство AЧPII выполняется с помощью реле частоты KF2 и реле времени КТ1. Сигнализация срабатывания АЧР1 и AЧPII выполняется с помощью указательных реле КН1 и КН2 соответственно. При выполнении АЧР только одного вида (АЧР1 или AЧPII) соответствующая часть реле исключается из схемы.
С целью экономии реле частоты во многих случаях для осуществления совмещенного АЧР используются специальные схемы, в которых предусматривается переключение уставки одного реле частоты. Одна из таких схем приведена на рис. 1, б. В схеме АЧР используется одно реле частоты KF типа РЧ-1, на измерительных элементах которого настроены уставки, соответствующие АЧР1 и AЧPII. В нормальном режиме до срабатывания KF замкнут контакт KL2.1 двухпозиционного реле типа РП8, чем обеспечивается готовность к действию обоих измерительных элементов реле, настроенных на уставки АЧР1 и AЧPII.
а) б)
Рис. 1 Схемы АЧР1 и AЧPII: а – с двумя реле частоты; б – с одним реле частоты с переключением уставки
При снижении частоты до уставки AЧPII замкнется контакт KF.1 и реле KLI контактом KL1.1 подаст плюс на верхнюю обмотку реле KL2, которое, переключив свои контакты, выведет из действия измерительный элемент с уставкой AЧPII. Если частота понизится до уставки AЧPI, контакт KF.1 при этом не разомкнется или, разомкнувшись кратковременно, замкнется вновь, после чего с небольшим замедлением сработает промежуточное реле KL3 и контактом KL3.1 подаст импульс через указательное реле КН1 на выходное промежуточное реле KL5. На этом работа схемы закончится.
Если частота не снизится до уставки AЧPI, схема будет продолжать работать. Реле времени КТ1, сработав при замыкании контакта KL2.3, будет самоудерживаться через свой мгновенный замыкающий контакт КТ1.1. Спустя выдержку времени, установленную на проскальзывающем контакте КТ1.2, будет подан плюс на нижнюю обмотку реле KL2, и оно переключит свои контакты, вновь вводя в действие измерительный элемент с уставкой AЧPII. В течение всего времени, пока не замкнется проскальзывающий контакт КТ1.2, схема будет готова к действию на отключение без выдержки времени в случае снижения частоты до уставки АЧР1. После замыкания проскальзывающего контакта КТ1.2 и переключения контактов реле KL2 цепь отключения от АЧР1 будет выведена и в работе останется только AЧPII. После переключения KL2 сработают вновь KF (если частота в энергосистеме будет ниже уставки срабатывания AЧPII) и реле KL1, и запустится реле времени КТ2, которое, доработав, через указательное реле КН2 подаст плюс на выходное реле схемы KL5. Промежуточное реле KL4, обмотка которого включена параллельно обмотке КТ1, будет держать своим контактом KL4.1 разомкнутой цепь верхней обмотки реле KL2, предотвращая его повторное срабатывание.
Возврат схемы в исходное положение осуществляется после срабатывания выходного реле KL5, которое разомкнет контакт KL5.1 в цепи обмоток реле КТ1 и KL4. В случае если схема не подействует на отключение вследствие восстановления частоты в энергосистеме выше уставки AЧPII и возврата реле KF, возврат схемы будет осуществлен шунтированием обмотки КТ1 по цепи: упорный контакт КТ1.3 – размыкающий контакт KL1.3 – размыкающий контакт KL2.4. Выдержка времени AЧPII в рассматриваемой схеме определяется суммой выдержек времени, установленных на КТ2 и на проскальзывающем контакте КТ1.2.
Дата добавления: 2014-12-23; просмотров: 271 | Поможем написать вашу работу | Нарушение авторских прав |
|