Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Солнце – центральная звезда Солнечной системы

Читайте также:
  1. CAD/CAM-системы в ТПП
  2. CALS-технологий и единая интегрированной системы управления вуза
  3. I. Общие симптомы заболеваний пищеварительной системы.
  4. II. Исследование В-системы иммунитета.
  5. III Рекомендации к написанию курсовой работы по дисциплине «Коррекционно-педагогические системы воспитания и обучения детей дошкольного возраста».
  6. IV. Анатомия органов сердечно-сосудистой системы
  7. PDM-системы
  8. Quot;Развитие системы торговли на 10%- вдохновение, и на 90%- пот” Sunny Harris
  9. V 2: Болезни сердечно-сосудистой системы
  10. V. Органы лимфатической системы, иммунной системы.

Начинать обзор Солнечной системы необходимо с ее главного компонента. Интересно, но по классификации звезд Солнце относится к типу желтых карликов класса G2. Это не должно вводить в заблуждение, поскольку в рамках нашей Галактики Солнце является довольной яркой и большой звездой. Возраст главной звезды около 5 млрд. лет, однако, Солнце образовалось на поздней стадии становления Вселенной, относясь к элементам I типа звездного населения. Благодаря огромной массе Солнца в его недрах происходит термоядерные реакции синтеза, посредством которых в пространство излучается большое количество энергии. Планеты Солнечной системы сильно подвержены влиянию центральной звезды, например, это выражается во влиянии солнечного ветра на атмосферы планет. Непрерывные потоки заряженных солнечных частиц оказывают значительное влияние на развитие каждой планеты.

Планеты земной группы

Внутренними планетами Солнечной системы объекты, которые имеют в своем составе преимущественно тяжелые элементы, у них отсутствуют кольца, а также не более двух спутников. Как правило, железо и никель формируют ядро таких планет, а тугоплавкие минералы образуют их мантию и кору. Рассмотрим планеты данной группы подробнее.

Меркурий

Ближайшая планета к Солнцу наименьшего размера в системе (всего 0,055 размера Земли). Геологическая особенность этой планеты состоит в многочисленных зубчатых откосах, покрывающих сотни километров поверхности, что связывают с ранней стадией развития Меркурия и влиянием на него приливных деформаций. У Меркурия нет спутников, планета имеет разреженную атмосферу, состоящую из атомов, вытесненных с ее поверхности солнечным ветром. До сих пор остается загадкой, почему при относительно большом размере железного ядра Меркурий имеет тонкую кору. Существует неподтвержденная гипотеза, что это стало результатом столкновения планеты, в результате которого значительно уменьшился ее размер.

Венера

Планета, близкая по своим размерам к Земле (около 0,815). Обе эти планеты Солнечной системы вокруг своего железного ядра имеют плотную силикатную оболочку. Существуют свидетельствования внутренней геологической активности Венеры. Количество воды на ней значительно меньше земного, а атмосфера Венеры в 90 раз плотнее. Температура ее превышает 400 градусов по Цельсию, возводя в ранг самой горячей планеты. Вероятно, что объясняется это парниковым эффектом, вызванным плотной атмосферой и большим количеством углекислого газа. У Венеры отсутствуют спутники.

Земля

Крупнейшая внутренняя планета, характеризующаяся тектоникой плит. Один из ключевых вопросов, интересующих умы многих людей: есть ли жизнь за рамками Земли? Точного ответа никто пока не получил, но можно с уверенностью утверждать, что Земля является уникальной по своей структуре планетой (прежде всего из-за гидросферы). Атмосфера нашей планеты также значительно отличается, содержа в себе свободный кислород. Луна является единственным большим спутником Земли и всей внутренней группы Солнечной системы.

Марс

Планета, которая значительно меньше Земли (всего 0,107 ее массы). Атмосфера Марса преимущественно содержит в себе углекислый газ. На поверхности планеты имеются вулканы, наиболее известный из которых Олимп, достигающий высоты 21,2 км, что превышает все возможные земные аналоги. Рифтовые впадины Марса свидетельствуют о геологической активности, окончившейся около 2 млн. лет назад. Яркий красный цвет планеты обуславливается большим содержанием оксида железа в ее грунте. Есть предположение, что спутникиФобос и Деймос являются захваченными Марсом астероидами.

Планеты гиганты

Внешняя область огромной Солнечной системы является пристанищем для газовых гигантов и их спутников. Большое расстояние от Солнца обуславливает у твердых объектов внешней области низкие температуры, а также большое содержание аммиака и метана. Рассмотрим более подробно каждую планету в Солнечной системе, относящихся к газовым гигантам.

Юпитер

Планета Юпитер, превышает массу Земли примерно в 318 раз. Состоит преимущественно из водорода и гелия. Высокая температура внутри планеты обуславливает множество вихревых структур в его атмосфере, например, полосы облаков. Юпитер имеет 65 спутников, 4 крупнейших из которых (Ганимед, Европа,Ио и Каллисто) в некоторых моментах напоминают планеты земной группы. Например, им свойственны внутренний нагрев и вулканическая активность. Интересный факт, что крупнейший спутник Ганимед, аналога которому нет в Солнечной системе, превышает по размеру сам Юпитер.

Сатурн

Структура атмосферы и магнитосферы данной планеты схожа с Юпитером, но известен Сатурн именно своей системой колец. Масса Сатурна превышает земную в 95 раз, но он является наименее плотной планетой Солнечной системы (его плотность можно сравнить с плотностью воды). По подтвержденным данным, у Сатурна имеется 62 спутника, два из которых (Титан и Энцелад) проявляют геологическую активность. Однако активность эта обусловлена движением льда и не похожа на внутренние планеты Солнечной системы.

Уран

Планета, превышает массу Земли всего в 14 раз, является наиболее легкой из всей внешней группы. Уран уникален тем, что осуществляет свое вращение «на боку», поскольку наклон его оси вращения около 98 градусов. Эта планета имеет очень холодное ядро, излучая большое количество тепла в космос. Известны 27 спутников Урана, в числе которых Ариэль, Миранда, Оберон, Титания и другие.

Нептун

Планета в 17 раз превышает земную массу, имея более плотный состав. Она излучает много внутреннего тепла, но уступает по этому показателю Юпитеру иСатурну. Известны 13 спутников Нептуна, крупнейший из которых (Тритон) проявляет геологическую активность и имеет на своей поверхности гейзеры жидкого азота. Это единственный спутник, который движется в обратном направлении. Интересный факт, что планета сопровождается так называемыми Нептунскими троянцами, представляющими собой тела астероидного типа.

Солнечная система – бесконечная область для будущих познаний и открытий. Людей всегда интересовали тайны нашей Вселенной, а сейчас, в век постоянного технологического прогресса, появляется возможность приоткрывать завесы неизведанного. Планеты Солнечной системы – это необъятный мир, о котором нам предстоит узнать еще много нового. И кто знает, возможно, когда-нибудь людям удастся продолжить свое развитие уже не только на Земле, но и за ее пределами.

 

 

2.Космонавтика — сегодня, завтра и всегда

Сегодня путешествия в космос воспринимаются как нечто само собой разумеющееся. Над нами летают сотни спутников и тысячи прочих нужных и бесполезных объектов, за секунды до восхода солнца из окна спальни можно увидеть вспыхнувшие в ещё невидимых с земли лучах плоскости солнечных батарей Международной космической станции, космические туристы с завидной регулярностью отправляются «бороздить просторы» (тем самым воплощая в реальность ерническую фразу «если очень захотеть, можно в космос полететь») и вот-вот начнётся эра коммерческих суборбитальных полётов с чуть ли не двумя отправлениями ежедневно. Освоение космоса управляемыми аппаратами и вовсе поражает всякое воображение: тут и снимки давно взорвавшихся звёзд, и HD-изображения дальних галактик, и веские доказательства возможности существования жизни на других планетах. Корпорации-миллиардеры уже согласовывают планы по строительству на орбите Земли космических отелей, да и проекты колонизации соседних нам планет давно не кажутся отрывком из романов Азимова или Кларка. Очевидно одно: однажды преодолев земное тяготение, человечество будет вновь и вновь стремиться ввысь, к бесконечным мирам звёзд, галактик и вселенных. Хочется пожелать только, чтобы нас никогда не покидала красота ночного неба и мириадов мерцающих звёзд, по-прежнему манящих, таинственных и прекрасных, как в первые дни творения.

Человек в космосе

День 12 апреля 1961 г. разделил историю освоения космических далей на два периода — «когда человек мечтал о звёздах» и «с тех пор, как человек покорил космос». В 9:07 по московскому времени со стартовой площадки № 1 космодрома Байконур был запущен космический корабль «Восток-1» с первым в мире космонавтом на борту — Юрием Гагариным. Совершив один виток вокруг Земли и проделав путь в 41 тыс. км, спустя 90 минут после старта, Гагарин приземлился под Саратовом, став на долгие годы самым знаменитым, почитаемым и любимым человеком планеты. Его «поехали!» и «всё видно очень ясно — космос чёрный — земля голубая» вошли в список наиболее известных фраз человечества, его открытая улыбка, непринуждённость и радушие растопили сердца людей по всему миру. Первый полёт человека в космос управлялся с Земли, сам Гагарин являлся скорее пассажиром, хотя и великолепно подготовленным. Нужно отметить, что условия полёта были далеки от тех, что предлагаются ныне космическим туристам: Гагарин испытывал восьми-десятикратные перегрузки, был период, когда корабль буквально кувыркался, а за иллюминаторами горела обшивка и плавился металл. В течение полёта произошло несколько сбоев в различных системах корабля, но к счастью, космонавт не пострадал.

С тех пор каждое 12 апреля мы отмечаем День космонавтики.

Первые живые существа на орбите

Успех первого запуска окрылял конструкторов, и перспектива отправить в космос живое существо и вернуть его целым и невредимым уже не казалась неосуществимой. Всего через месяц после запуска «Спутника-1» на борту второго искусственного спутника Земли на орбиту отправилось первое животное — собака Лайка. Цель у неё была почётная, но грустная — проверить выживаемость живых существ в условиях космического полёта. Более того, возвращение собаки не планировалось… Запуск и вывод спутника на орбиту прошли успешно, но после четырёх витков вокруг Земли из-за ошибки в расчётах температура внутри аппарата чрезмерно поднялась, и Лайка погибла. Сам же спутник вращался в космосе ещё 5 месяцев, а затем потерял скорость и сгорел в плотных слоях атмосферы. Первыми лохматыми космонавтами, по возвращении приветствовавшими своих «отправителей» радостным лаем, стали хрестоматийные Белка и Стрелка, отправившиеся покорять небесные просторы на пятом спутнике в августе 1960 г. Их полёт длился чуть более суток, и за это время собаки успели облететь планету 17 раз. Всё это время за ними наблюдали с экранов мониторов в Центре управления полётами — кстати, именно по причине контрастности были выбраны белые собаки — ведь изображение тогда было чёрно-белым. По итогам запуска также был доработан и окончательно утверждён сам космический корабль — всего через 8 месяцев в аналогичном аппарате в космос отправится первый человек.

Помимо собак и до, и после 1961 г в космосе побывали обезьяны (макаки, беличьи обезьяны и шимпанзе), кошки, черепахи, а также всякая мелочь – мухи, жуки и т. д.

Первый искусственный спутник

Время шло, и хотя две мировые войны сильно замедлили процесс создания ракет для мирного использования, космический прогресс всё же не стоял на месте. Ключевой момент послевоенного времени — принятие так называемой пакетной схемы расположения ракет, применяемой в космонавтике и поныне. Её суть — в одновременном использовании нескольких ракет, размещённых симметрично по отношению к центру массы тела, которое требуется вывести на орбиту Земли. Таким образом обеспечивается мощная, устойчивая и равномерная тяга, достаточная, чтобы объект двигался с постоянной скоростью 7,9 км/с, необходимой для преодоления земного тяготения. И вот 4 октября 1957 года началась новая, а точнее первая, эра в освоении космоса — запуск первого искусственного спутника Земли, как всё гениальное названного просто «Спутник-1», с помощью ракеты Р-7, спроектированной под руководством Сергея Королёва. Силуэт Р-7, прародительницы всех последующих космических ракет, и сегодня узнаваем в суперсовременной ракете-носителе «Союз», успешно отправляющей на орбиту «грузовики» и «легковушки» с космонавтами и туристами на борту — те же четыре «ноги» пакетной схемы и красные сопла. Первый спутник был микроскопическим, чуть более полуметра в диаметре и весил всего 83 кг. Полный виток вокруг Земли он совершал за 96 минут. «Звёздная жизнь» железного пионера космонавтики продлилась три месяца, но за этот период он прошёл фантастический путь в 60 миллионов км!

Билет №6

Гипотезы о происхождении планет Солнечной системы

Вопросами происхождения планет Солнечной системы занимается космогония. Полного и исчерпывающего ответа на этот вопрос наука не дает. Пока нет возможности проверить выводы современных теорий применительно к какой-либо другой планетной системы. Рассмотрим наиболее известные космогонические гипотезы.

Гипотеза Канта-Лапласа. Кант предположил, что Солнечная система образовалась из космического облака, или «хаоса». Формируясь из сгущений, возникших в первичной туманности, планеты отдалялись от нее и от Солнца центробежными силами. Интересно, что Кант изложил эти идеи в трактате, посвященном доказательству бытия Божия. По мнению Канта «Бог вложил в силы природы тайное искусство самостоятельно развиваться из хаоса в совершенное мироздание». У Канта, таким образом, образование планет происходило из холодного газопылевого облака.

Идею Канта поддержал Лаплас, однако, согласно его гипотезе планеты образовались в результате отделения от раскаленного протосолнца газовых колец, их охлаждения и конденсации. Кольца разделялись на несколько масс, образовавших затем разные планеты.

Эта гипотеза получила название небулярной (от лат. nebula – туманность) гипотезы Канта-Лапласа. Поскольку формирование колец и планет происходило в условиях вращения туманности и действия центробежных сил, эта гипотеза называется еще и ротационной (лат. rotatio – вращение).

Гипотеза Джинса. Гипотеза Канта-Лапласа не могла объяснить также и тот факт, что момент количества движения (кинетический момент) планет приблизительно в 29 раз больше момента количества движения Солнца, а это противоречит закону сохранения кинетического момента. Для разрешения этого противоречия появились так называемые «катастрофические гипотезы», к которым относится гипотеза Джинса. Согласно ей некая звезда прошла неподалеку от Солнца и вызвала мощные приливы на нем, принявшие форму газовых струй, из которых впоследствии образовались планеты. Из этой гипотезы следовал вывод об уникальности Солнечной системы.

Гипотеза О.Ю. Шмидта. Советский ученый О.Ю. Шмидт (1891-1956) предположил, что Солнце, вращаясь вокруг центра Галактики, могло захватить материю, обладающую достаточным моментом количества движения. Расчеты Шмидта, в частности, показали, что начальный период обращения Солнца был очень большим, а затем должен был уменьшиться до 20 суток. В действи-тельности он равен 25 суткам, и такое совпадение считается хорошим.

Ожидается, что новый свет на загадку образования Солнечной системы прольют дальнейшие исследования планет земной группы и планет-гигантов с помощью автоматических космических станций.

2. 3. Нивелирование поверхности.

 

Для отображения рельефа на топографических картах, планах и профилях необходимо знать высоты точек местности. С этой целью производят нивелирование (вертикальную съемку), под которым подразумевают полевые измерительные действия, в результате которых определяют превышения одних точек местности над другими. Затем по известным высотам исходных точек определяют высоты остальных точек относительно принятой уровенной поверхности.

В зависимости от метода и применяемых приборов различают следующие виды нивелирования:

1) геометрическое, выполняемое с помощью нивелира, который обеспечивает горизонтальный луч визирования, и двух нивелирных реек. Можно выполнять двумя методами: «из середины» и «через ГП»

2) тригонометрическое, выполняемое наклонным визирным лучом;

3) барометрическое, выполняемое с помощью барометров, действие которых основано на известной зависимости между атмосферным давлением и высотой над уровнем моря;

4) гидростатическое, основанное на свойстве свободной поверхности жидкости в сообщающихся сосудах всегда находиться на одинаковом уровне независимо от высоты точек, на которых установлены эти сосуды;

5) стереофотограмметрическое, выполняемое с помощью измерений на стереоскопических парах аэрофотоснимков;

6) аэрорадионивелирование, осуществляемое с помощью радиовысотомеров, устанавливаемых на самолетах;

7) механическое, производимое с помощью приборов, автоматически вычерчивающих профиль проходимого пути;

8) GPS (глобальная система позиционирования).

Из перечисленных видов нивелирования наиболее точным и распространенным является геометрическое нивелирование.

 




Дата добавления: 2014-12-18; просмотров: 201 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав