Читайте также:
|
|
Векторы называются линейно зависимыми, если существует такая линейная комбинация
, при не равных нулю одновременно ai, т.е.
. Если же только при ai = 0 выполняется
, то векторы называются линейно независимыми.
Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы.
Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.
Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.
Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.
Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.
Свойство 6. Любые 4 вектора линейно зависимы.
Условия коллинеарности, ортогональности и компланарности векторов.
Векторы, расположенные на одной прямой или на параллельных прямых, называются коллинеарными.
Векторы называются ортогональными, если их скалярное произведение равно нулю.
Векторы, лежащие в одной плоскости или параллельные одной плоскости, называются компланарными.
Дата добавления: 2015-01-30; просмотров: 317 | Поможем написать вашу работу | Нарушение авторских прав |