Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Введение

Читайте также:
  1. I Введение
  2. I Введение
  3. I. ВВЕДЕНИЕ
  4. I. Введение
  5. I. Введение.
  6. Август 1954 г. г. МоскваВВЕДЕНИЕ
  7. Б) введение иммуноглобулина
  8. Блок 1. Введение в политологию
  9. ВВВЕДЕНИЕ
  10. Введение

За последние несколько лет оптические накопители претерпели существенные изменения. Сегодня оптический накопитель является неотъемлемой частью ПК - что определяет актуальность выбранной темы.
Оптический накопитель стал неотъемлемой частью ПК, т.к. разнообразные программные продукты (прежде всего игры и базы данных) стали занимать значительное количество места, и поставка их на дискетах оказалась чрезмерно дорогостоящей и ненадёжной. Поэтому их стали поставлять на оптических дисках (таких же, как и обычные музыкальные), а некоторые игры и программы работают прямо с оптического диска, не требуя копирования на жёсткий диск.
Также современный компьютер является мощным мультимедийным центром позволяющим проигрывать музыку, просматривать фильмы.
2. История создания оптического накопителя. Оптические диски практически являются ровесниками персональных компьютеров. И у них даже есть свои родители - виниловые пластинки. Годом прихода оптических дисков в современные технологии считается 1982-й. Именно тогда две крупнейших компании Philips и Sony занялись новыми разработками. Исполнительный директор фирмы Sony Акио Морита, прославившийся также авторством знаменитого плейера Walkman, считал, что такие диски должны быть предназначены для прослушивания классической музыки. И стандартом продолжительности звучания взяли время звучания 9-й симфонии Бетховена, которое равняется примерно 73 минутам. Было решено сделать стандартным время звучания, равное 74 минутам 33 секундам. Так родился стандарт "Красная книга" (Red book) в котором был описан стандарт дисков CD-DA (CD-Digital Audio). Причем предшественником ему был стандарт обычной виниловой пластинки длительностью в 45 минут, обладающий худшим качеством звука и не сравнимыми с CD рабочими характеристиками носителя. Наравне с Sony в формировании стандарта "Красной книги" принимала участие и фирма Philips. Были введены жесткие требования к размерам, качеству звука, методу кодирования данных и использование единой спиральной дорожки.
На CD-DA данные представлены следующим образом.
Структурно весь диск можно разделить на три основные части: lead-in (вводная зона, хранящая всю информацию о структуре и принадлежности диска), PMA (Program Memory Area - непосредственно сами данные) и lead-out (выводная зона, состоящая практически из одних "нулей" и по сути являющаяся индикатором конца диска).
Вся информация записывается на CD-DA в виде дорожек, разделенных зазорами (div-gap), равными 2 секундам. Таких дорожек может быть 99, и каждая из них может быть разбита на 99 фрагментов. Понятие дорожек несколько вторично, но хорошо подходит для простейшего описания структуры диска.
На самом деле информация на диске представлена в виде блоков-сегментов, которые имеют стандартный размер (2352 байта) и стандартную скорость их чтения - 75 блоков в секунду. То есть, если мы говорим о зазоре длиной в две секунды, то подразумеваем 150 "пустых" блоков-сегментов. Сами же дорожки состоят из наполненных информацией блоков.
Блок-сегмент, в свою очередь, состоит из 98 микрокадров, каждый из которых имеет размер в 24 байта (192 бита). 24 байта может содержать описание значений шести дискретных отсчетов правого и левого каналов. И приведенное значение 2352 байта можно получить простым умножением 98 на 24. Так что, говоря о таком размере сегмента, мы говорим только о чисто звуковой информации.

История развития оптического накопителя. Разработанная Philips и Sony новая спецификация для хранения цифровых данных на CD-носителях стала называться "Желтой книгой", а сами носители - CD-ROM (Read Only Memory). Блок-сегмент, равный 2352 байтам, преобразовался. То есть по стандарту были предусмотрены типы Mode 1, предназначенный для хранения цифровых компьютерных данных, и Mode 2 - сжатых графических, текстовых и звуковых данных. Блок-сектор типа Mode 1 хранит в себе информацию по коррекции и исправлению ошибок EDC/ECC (Error Detection Code/Error Correction Code) и является самым распространенным. На коррекцию и исправление ошибок в каждом секторе отводится 288 байт. В результате на информацию остается 2064 байта, 12 из которых выделяются на синхронизацию и 4 байта - для заголовка сектора.
Таким образом, основной минимальной единицей в формате CD-DA является дорожка, а в CD-ROM - сегмент.
Устройство накопителей на CD-ROM.
После прихода двух стандартов, описанных "Красной" и "Желтой" книгами, стояла одна существенная проблема: носители были строго привязаны к типам накопителей. То есть совмещение аудио и цифровых данных было в то время не реализовано. Появились диски смешанных форматов, хранящие в себе данные как CD-ROM, так и CD-DA. Причем первые данные (CD-ROM) записывались в начале диска. Это не совсем удобно, поскольку аудионакопители пытаются прочитать первую дорожку, чем могут навредить аудиоаппаратуре, а CD-ROM-накопители не могут одновременно читать программу и воспроизводить аудио.
В ноябре 1985 года представители ведущих производителей CD-ROM собрались для того, чтобы обсудить проблему совместимости и общего типа структурирования файловой системы для всех носителей. То есть требовался стандарт для файловой системы, структуры записи и чтения и т.п. Был составлен документ, который являлся спецификацией (название спецификации - HSG), определяющей логические и файловые форматы компакт-дисков. Документ носил рекомендательный характер, и хотя впоследствии многое определил для технологической отрасли в целом, цвета книги для него так и не нашлось. Предложение формата HSG-спецификации во многом базировалось на представлении структуры флоппи-диска, содержащего нулевой трек или системную дорожку, в которой хранятся данные о типе носителя и его файловой структуре с директориями, поддиректориями и файлами. CD организован немного по-другому. То есть все данные такого типа хранятся в служебной и системной областях. В первой хранится информация, необходимая для синхронизации между носителем и накопителем. Во второй - файловая структура, причем указываются прямые адреса файлов в поддиректориях, что сокращает время поиска.

Через три года (1988) был принят международный стандарт ISO-9660, основные положения которого были очень схожи с HSG-представлением. Этот стандарт описывал файловую систему CD-ROM и имел три уровня. Первый уровень выглядит примерно так:

- имена файлов могут содержать до 8 символов;
- в названиях файлов используются символы только верхнего регистра, цифры и символ "_";
- в именах файлов не допускаются специальные символы - "-,~,=,+";
- имена каталогов не могут иметь расширений;
- файлы не могут быть фрагментированы.
Второй и третий уровень ISO-9660 только облегчают и расширяют возможности первого. В частности, на втором уровне сняты ограничения по именам файлов и каталогов (например, разрешено уже создавать имена длиной в 32 символа), на третьем уже разрешается фрагментировать файлы. Стоить отметить, что ISO-9660 первого уровня стандартизирует в основном форматы файловых систем MS-DOS и HFS (Apple Macintosh). Второй уровень в данных системах уже не читаемый.Для Apple Macintosh существует отдельно стандарт формата файловой системы HFS (Hierarchical File System). У данной платформы компьютеров своя особая иерархия файловой системы, из-за чего данный стандарт является востребованным. На один диск можно записать несколько форматов файловых систем одновременно.
В накопителе CD-RW используются три режима работы лазера, отличающиеся мощностью луча: режим записи (максимальная мощность, обеспечивающая переход активного слоя в неотражающее аморфное состояние), режим стирания (возвращает активный слой в отражающее кристаллическое состояние) и режим чтения (самая низкая мощность, не влияющая на состояние активногослоя).

45) Структура и принцип работы оптических дисков многоразовой записи

С каждой стороны диска расположен несущий слой, а в промежутке - клеевая

прослойка. Вся эта “сердцевина“ помещена в защитную оболочку с нанесенной на

нее сеткой.

Несущий слой оптического диска многоразовой записи состоит из магнитной

пленки, которая, оказавшись в мягком магнитном поле при темрературе около

145’С, меняет полярность на противоположную, а при комнатной температуре

ведет себя стабильно. Магнитная пленка наносится в результате сложного

процесса вакуумного напыления. Цифровая информация записывается не ямками и

бугорками, как на других оптических носителях, а направлением магнитного

потока.

В качестве прослойки используется смола, скрепляющая пластины между собой.

Оболочкой служит, как правило, поликарбонат с непрерывной спиральной

канавкой, которая и образует дорожки на диске, и секторными линиями.

МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание информации производится при помощи луча лазера и магнитного поля, а считывание при помощи одного только лазера. В отличие от традиционных магнитных устройств в данном случае головка чтения/записи содержит магнит и лазер.В процессе записи, магнитный материал МО диска не способен изменить своюполярность, пока не будет нагрет до температуры около 145`С. В результате образуется крошечная область в большем магнитном поле, и только на эту область влияет поле. После окончания нагрева сопротивляемость снова увеличивается но полярность нагретой точки остается. В цикле записи,полярность магнитного поля меняется на противоположную, что соответсвует двоичной единице. В этом цикле лазерный луч включается только на тех участках, которые должны содержать двоичные единицы, и оставляет участки с двоичными нулями без изменений.В процессе чтения с МО диска используется эффект Керра. Лазерный луч, который движется над диском и считывает данные, поляризован. Таким образом, фотоны влазерном луче ориентированы в одном направлении. Когда поляризованный луч бьет магнитно-упорядоченные частицы диска, магнитное поле частиц слегка поворачивает вектор поляризации светового луча. Этот поворот ощущается магнитной головкой.

При считывании используется лазерный луч небольшой интенсивности, не

приводящий к нагреву считываемого участка, таким образом при считывании

хранимая информация не разрушается. Такой способ, не деформирует поверхность

диска и позволяет повторную запись без дополнительного оборудования. Этот

способ также имеет преимущество перед традиционной магнитной записью в

плане надежности. Так как перемагничиваниие участков диска возможно только

под действием высокой температуры, вероятность случайного перемагничивания

очень низка, в отличии от магнитной записи, к потери которой могут привести

случайные магнитные поля.




Дата добавления: 2015-01-30; просмотров: 78 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав