Читайте также:
|
|
Средние величины также, как и относительные, являются разновидностью обобщающих показателей.
Однако в отличие от относительных величин они характеризуют интересующее нас явление не по качественному, а по количественному признаку и выражаются именованными, а не отвлеченными числами.
Например, средний срок наказания лиц, осужденных за убийство из ревности, составляет 10 лет; средняя продолжительность жизни у мужчин в России составляла в 1994 году 57,3 года, у женщин - 71, I года; средний размер месячной пенсии по старости у пенсионеров Томской области в 1996 году равняло 206794 руб., в 1997 году - 243551 руб. и т.д. Подобных примеров можно приводить, сколько угодно, что говорит о широком применении средних величин. В то же время необходимо всегда помнить, что средние величины дают правильное представление об исследуемом явлении лишь в том случае, когда они используются для характеристики качественно однородных групп.
В связи с этим важнейшим условием получения надежных и достоверных средних величин является то, что эти величины должны вычисляться лишь на базе предварительных научно обоснованных группировок.
Невыполнение этого условия может привести к неправильным выводам или нелепым курьезам, если, например, объединить в одну совокупность так называемых «новых русских» и полунищих пенсионеров, а потом вычислять их средний годовой доход.
В правовой статистике средние величины используются чаще для характеристики среднего размера иска, средних сроков рассмотрения той или иной категории дел, среднего размера ущерба, средней нагрузки следователей и судей, среднего возраста осужденных и т.д. По своему содержанию и способу исчисления средне величины подразделяются на несколько видов: средняя арифметическая (простая и взвешенная);
- структурные средние (мода и медиана);
- средняя прогрессивная и другие (например, средняя геометрическая, средняя гармоническая).
22. Средняя арифметическая.
Средняя арифметическая является наиболее распространенным видом средних величин. Она бывает двух видов: средняя арифметическая простая и средняя арифметическая взвешенная.
Средняя арифметическая простая есть частное отделение суммы величин на их число. Например, требуется определить среднемесячную нагрузку следователя РОВД одного из сельских районов Томской области, если известно, что один го них за месяц рассмотрел 12 уголовных дел, 2-ой — 10, 3-й - 18, а 4-й - 8.
Средняя арифметическая простая:
Средняя арифметическая взвешенная применяется в тех случаях, когда значения признаков (в нашем примере 12, 10, 18 и 8) повторяются по не сколько раз. Например, в городском ОВД по 12 уголовных дел в месяц рассматривает не один, а 10 следователей, по 10 уголовных дел - 18 следователей по 18 дел - 5 и по 8 дел - 7 следователей. Тогда:
Иными словами, средняя арифметическая взвешенная есть частное отделения суммы произведений каждого значения признака на число единиц имеющих это значение, - на общее число единиц совокупности.
Иногда значение признака выражается не в виде определенного числа, а виде интервала «от - до».
В этом случае необходимо сначала определить центры интервалов (как среднюю арифметическую интервала), а потом производить расчеты способом изложенным выше.
Дата добавления: 2015-01-30; просмотров: 159 | Поможем написать вашу работу | Нарушение авторских прав |