Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Биогеоценоз— экосистема

Читайте также:
  1. Агроэкосистемы, их отличия от природных экосистем. Последствия деятельности человека в экосистемах. Сохранение экосистем.
  2. Гетеротрофы в экосистемах являются
  3. Город как экосистема
  4. Живые организмы в экосистемах, для своего существования должны постоянно пополнять и расходовать энергию.
  5. Круговорот веществ и потоки энергии в экосистемах
  6. Основные компоненты экосистемы. Энергия в экосистемах.
  7. Потоки энергии в экосистемах
  8. Экологические взаимодействия организмов в экосистемах.
  9. Экосистема – структура и законы функционирования

Лекция 1

ОСНОВЫ ЭКОЛОГИИ

 

1. Предмет, задачи и методы экологии

2. Среда обитания и условия существования организмов

3. Экологические факторы

4. Закономерности действия экологических факторов на организм

5. Взаимодействие экологических факторов

6. Влияние основных абиотических факторов на живые организмы

7. Биотическая среда.

8. Трофическая (пищевая) цепь

9. Формы биотических отношений.

10. Круговороты энергии в экосистемах

 

Предмет, задачи и методы экологии. Экология (греч, oikos — жилище, местопребывание, logos — наука) — биологическая наука о взаимоотношениях между живыми организмами и ареалами их обитания. Этот термин был предложен в 1866 г. немецким зоологом Эрнстом Геккелем.

Ареал (лат. area — площадь, пространство) — часть поверхности суши или акватории, в пределах которой распространены и проходят полный цикл своего развития особи данного вида (роды, семейства или определенного типа сообщества).

Объектами экологии являются преимущественно системы выше уровня организмов, т. е. изучение организации и функционирования надорганизменных систем: популяций, биоценозов (сообществ), биогеоценозов (экосистем) и биосферы в целом. Другими словами, главным объектом изучения в экологии являются экосистемы, т. е. единые природные комплексы, образованные живыми организмами и средой обитания.

Популяция — (лат. populus — народ, население). группировка особей одного вида, в течение длительного времени населяющие определенную часть ареала, свободно скрещивающиеся и относительно обособленные от других, совокупностей того же вида, называются популяцией

Вид — группа организмов, которые обладают общими признаками в строении тела, физиологии и способах взаимоотношения со средой, способных скрещиваться между собой с образованием плодовитого потомства, но не способных это делать с организмами других видов.

Биоценоз — совокупность организмов, населяющих экосистему, взаимосвязанных между собой обменом веществ, энергии и информации.

Биогеоценоз— экосистема

Биосфера, согласно определения В.И.Вернадского, это среда нашей жизни, это та "природа" которая нас окружает.

Биосферная компонента города включает в себя, помимо человека, все виды зеленых насаждений, городские популяции животных. (голуби, воробьи, вороны, галки, водоплавающие птицы, зимующие на проталинах водных объектов, крысы и мыши, "одомашненные" насекомые, такие как мухи комары, блохи и тараканы, клопы, наконец, микробное и вирусное население многоэтажных зданий и городских квартир).

Главная теоретическая и практическая задача экологии — раскрыть общие закономерности организации жизни и на этой основе разработать принципы рационального использования природных ресурсов в условиях все возрастающего влияния человека на биосферу.

Важнейшая проблема современности взаимодействие человеческого общества и природы, поскольку положение, которое складывается в отношениях человека с природой, часто становится критическим. Исчерпываются запасы пресной воды и полезных ископаемых (нефти, газа, цветных металлов и др.), ухудшается состояние почв, водного и воздушного бассейнов, происходит опустынивание огромных территорий, усложняется борьба с болезнями и вредителями сельскохозяйственных культур.

Антропогенные изменения затронули практически все экосистемы планеты, газовый состав атмосферы, энергетический баланс Земли. Это означает, что деятельность человека вступила в противоречие с природой, в результате чего во многих районах мира нарушилось ее динамическое равновесие.

Для решения этих глобальных проблем и прежде всего проблемы интенсификации и рационального использования, сохранения и воспроизводства ресурсов биосферы экология объединяет в научном поиске усилия всех специалистов в биологии. В круг проблем экологии включены также вопросы экологического воспитания и просвещения, морально-этические, философские и даже правовые вопросы. Следовательно, экология становится наукой не только биологической, но и социальной.

Методы экологии подразделяются: на

полевые (изучение жизни организмов и их сообществ в естественных условиях, т. е длительное наблюдение в природе с помощью различной аппаратуры) и

экспериментальные (эксперименты в стационарных лабораториях, где имеется возможность не только варьировать, но и строго контролировать влияние на живые организмы любых факторов по заданной программе).

При этом экологи оперируют не только биологическими, но и современными физическими и химическими методами, используют моделирование биологических явлений, т. е. воспроизведение в искусственных экосистемах различных процессов, происходящих в живой природе. Посредством моделирования можно изучить поведение любой системы с целью оценки возможных последствий применения различных стратегий и методов управления ресурсами, т е. для экологического прогнозирования.

Для изучения и прогнозирования природных процессов широко используется также метод математического моделирования. Такие модели экосистем строятся на основе многочисленных сведений, накопленных в полевых и лабораторных условиях.

При этом правильно построенные математические модели помогают увидеть то, что трудно или невозможно проверить в эксперименте. Сочетание полевых и экспериментальных методов исследования позволяет экологу выяснить все аспекты взаимоотношений между живыми организмами и многочисленными факторами окружающей среды, что позволит не только восстановить динамическое равновесие природы, но и управлять экосистемами.

Среда обитания и условия существования организмов. Часть природы (совокупность конкретных абиотических и биотических условий), непосредственно окружающая живые организмы и оказывающая прямое или косвенное влияние на их состояние, рост, развитие, размножение, выживаемость называется средой обитания.

На нашей планете организмы освоили четыре основные среды обитания: водную, наземную (воздушную), почвенную и тело другого организма, используемое паразитами и полупаразитами.

От понятия «среда обитания» следует отличать понятие «условия существования» — это совокупность жизненно необходимых факторов среды, без которых живые организмы не могут существовать (свет, тепло, влага, воздух, почва). В отличие от них другие факторы среды хотя и оказывают существенное влияние на организмы, но не являются для них жизненно необходимыми (например, ветер, естественное и искусственное ионизирующее излучение, атмосферное электричество и др.).

Экологические факторы — это элементы окружающей среды, которые вызывают у живых организмов и их сообществ приспособительные реакции (адаптации).

По происхождению и характеру действия экологические факторы подразделяются на абиотические (элементы неорганической, или неживой, природы), биотические (формы воздействия живых существ друг на друга) и антропогенные (все формы деятельности человека, оказывающие влияние на живую природу).

Абиотические факторы делят на физические, или климатические (свет, температура воздуха и волы, влажность воздуха и почвы, ветер), эдафические, или почвенно-грунтовые (механический состав почв, их химические и физические свойства), топографические, или орографические (особенности рельефа местности), химические (соленость воды, газовый состав воды и воздуха, рН почвы и воды и др.).

Биотические факторыразнообразные формы влияния одних организмов на жизнедеятельность других. При этом одни организмы могут служить пищей для других (например, растения — для животных, жертва — для хищника), быть средой обитания (например, хозяин — для паразита), способствовать размножению и расселению (например, птицы и насекомые-опылители — для цветковых растений), оказывать механические, химические и другие воздействия.

Антропогенные (антропические) факторы — это все формы деятельности человеческого общества, изменяющие природу как среду обитания живых организмов или непосредственно влияющие на их жизнь. Выделение антропогенных факторов в отдельную группу обусловлено тем, что в настоящее время судьба растительного покрова Земли и всех ныне существующих видов организмов практически находится в руках человеческого общества.

Большинство экологических факторов — температура, влажность, ветер, наличие пищи, хищники, паразиты, конкуренты и т. д. — отличаются значительной изменчивостью во времени и пространстве. Степень изменчивости каждого из этих факторов зависит от особенностей среды обитания (температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер). Паразиты млекопитающих живут в условиях избытка пищи, тогда как для большинства хищников ее запасы меняются в соответствии с изменением численности жертв. Изменение факторов среды наблюдается в течение года и суток, в зависимости от приливов и отливов в океане, при бурях, ливнях, обвалах, при похолодании или потеплении климата, зарастании водоемов, постоянном выпасе скота на одном и том же участке и т. д.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой режим почвы играет первостепенную роль при минеральном питании растений, но безразличен для большинства наземных животных. Интенсивность освещения и спектральный состав света исключительно важны в жизни фототрофных растений, а в жизни гетеротрофных организмов (грибов и водных животных) свет не оказывает заметного влияния на их жизнедеятельность.

Экологические факторы действуют на организмы по-разному. Они могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; как ограничители, обусловливающие невозможность существования тех или иных организмов в данных условиях; как модификаторы, определяющие морфологические и анатомические изменения организмов.

Закономерности действия экологических факторов на организм. Реакция организмов на влияние абиотических факторов. Воздействие экологических факторов на живой организм весьма многообразно. Одни факторы оказывают более сильное влияние, другие действуют слабее; одни влияют на все стороны жизни, другие — на определенный жизненный процесс. Тем не менее в характере их воздействия на организм и в ответных реакциях живых существ можно выявить ряд общих закономерностей, которые укладываются в некоторую общую схему действия экологического фактора на жизнедеятельность организма. Диапазон действия экологического фактора ограничен соответствующими крайними пороговыми значениями (точки минимума и максимума), при которых еще возможно существование организма. Эти точки называются нижним и верхним пределами выносливости (толерантности) живых существ по отношению к конкретному фактору среды.

Наилучшим показателям жизнедеятельности организма — это точка оптимума. Для большинства организмов определить оптимальное значение фактора с достаточной точностью зачастую трудно, поэтому принято говорить о зоне оптимума.

Крайние состояния угнетения организмов при резком недостатке или избытке фактора, называют областями пессимума или стресса. Вблизи критических точек лежат сублетальные величины фактора, а за пределами зоны выживаниялетальные.

Подобная закономерность реакции организмов на воздействие экологических факторов позволяет рассматривать ее как фундаментальный биологический принцип: для каждого вида растений и животных существует оптимум, зона нормальной жизнедеятельности, пессимальные зоны и пределы выносливости по отношению к каждому фактору среды (рис. 1)

 

 
 


7 6 2 1 3 5 8

 

Рис.1

 

1— точка оптимума; 2-3 — зона оптимума; 3-5 —2-6— пределы выносливости (толерантности); 5,8 6,7 крайние состояния угнетения организмов области пессимума или стресса.

 

 

Разные виды живых организмов заметно отличаются друг от друга как по положению оптимума, так и по пределам выносливости. Например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне около 80°С (от +30 до -55°С), некоторые тепловодные рачки выдерживают изменения температуры воды в интервале не более 6°С (от 23 до 29°С) Нитчатая цианобактерия осциллатория, живущая на острове Ява в воде с температурой 64°С, погибает при 68°С уже через 5—10 мин.

Организмы, для существования которых необходимы строго определенные, относительно постоянные условия среды, называют стенобионтными (греч. Stenos — узкий, bion — живущий), а те, которые живут в широком диапазоне изменчивости условий среды, — эврибионтными (греч. eurys — широкий). При этом организмы одного и того же вида могут иметь узкую амплитуду по отношению к одному фактору и широкую — к другому (например, приспособленность к узкому диапазону температур и широкому диапазону солености воды). Кроме того, одна и та же доза фактора может быть оптимальной для одного вида, пессимальной для другого и выходить за пределы выносливости для третьего.

Способность организмов адаптироваться к определенному диапазону изменчивости факторов среды называют экологической пластичностью. Эта особенность является одним из важнейших свойств всего живого: регулируя свою жизнедеятельность в соответствии с изменениями условий среды, организмы приобретают возможность выживать и оставлять потомство. Эврибионтные организмы являются экологически наиболее пластичными, что обеспечивает их широкое распространение, а стенобионтные, напротив, отличаются слабой экологической пластичностью и, как следствие, обычно имеют ограниченные ареалы распространения.

Взаимодействие экологических факторов. Экологические факторы воздействуют на живой организм совместно и одновременно. При этом действие одного фактора зависит от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействие факторов. Например, жару или мороз легче переносить при сухом, а не при влажном воздухе. Скорость испарения воды листьями растений (транспирация) значительно выше, если температура воздуха высокая, а погода ветреная.

Однако, если значение хотя бы одного из жизненно необходимых экологических факторов приближается к критической величине или выходит за ее пределы (ниже минимума или выше максимума), то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Такие факторы называются ограничивающими (лимитирующими).

Ограничивающие факторы среды определяют географический ареал вида. Так, продвижение вида на север может лимитироваться недостатком тепла, а в районы пустынь и сухих степей — недостатком влаги или слишком высокими температурами. Фактором, ограничивающим распространение организмов, могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для цветковых растений. Выявление ограничивающих факторов и устранение их действия, т. е. оптимизация среды обитания живых организмов, составляет важную практическую цель в повышении урожайности сельскохозяйственных культури продуктивности домашних животных.

Влияние основных абиотических факторов на живые организмы. Характеристика света как экологического фактора. Живая природа не может существовать без света, так как солнечная радиация, достигающая поверхности Земли, является практически единственным источником энергии для поддержания теплового баланса планеты, создания органических веществ фототрофными организмами биосферы, что в итоге обеспечивает формирование среды, способной удовлетворить жизненные потребности всех живых существ.

Биологическое действие солнечного света зависит от его спектрального состава, продолжительности, интенсивности, суточной и сезонной периодичности.

Солнечная радиация представляет собой электромагнитное излучение в широком диапазоне волн, составляющих непрерывный спектр от 290 до 3 000 нм.

Ультрафиолетовые лучи (УФЛ) короче 290 нм, губительные для живых организмов, поглощаются слоем озона и до Земли не доходят.

Земли достигают главным образом инфракрасные (около 50% суммарной радиации) и видимые (45%) лучи спектра. На долю УФЛ, имеющих длину волны 290—380 нм, приходится 5% лучистой энергии. Длинноволновые УФЛ, обладающие большой энергией фотонов, отличаются высокой химической активностью. В небольших дозах они оказывают мощное бактерицидное действие, способствуют синтезу у растений некоторых витаминов, пигментов, а у животных и человека — витамина D; кроме того, у человека они вызывают загар, который является защитной реакцией кожи. Инфракрасные лучи длиной волны более 710 нм оказывают тепловое действие.

В экологическом отношении наибольшую важность представляет видимая область спектра (390—710 нм), или фотосинтетически активная радиация (ФАР), которая поглощается пигментами хлоропластов и тем самым имеет решающее значение в жизни растений. Видимый свет нужен зеленым растениям для образования хлорофилла, формирования структуры хлоропластов; он регулирует работу устьичного аппарата, влияет на газообмен и транспирацию, стимулирует биосинтез белков и нуклеиновых кислот, повышает активности ряда светочувствительных ферментов. Свет влияет также на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цветения и плодоношения, оказывает формообразующее воздействие.

Световые условия на нашей планете чрезвычайно велики: от таких сильно освещенных территорий, как высокогорья, пустыни, степи, до сумеречного освещения в водных глубинах и пещерах.

Реакция организмов на суточный ритм освещения, выражающаяся в изменении процессов траста и развития, называется фотопериодизмом. Регулярность и неизменная повторяемость из года в год данного явления позволяла организмам в ходе эволюции согласовывать свои важнейшие жизненные процессы с ритмом этих временных интервалов. Под фотопериодическим контролем находятся практически все метаболические процессы, связанные с ростом, развитием, жизнедеятельностью и размножением растений и животных.

Фотопериодическая реакция свойственна как растениям, так и животным.

Сезонная ритмика у животных наиболее ярко проявляется в смене оперения у птиц и шерсти у млекопитающих, периодичности размножения и миграции, зимних спячках некоторых животных и т. д.

Биологические ритмы характерны и для человека. Суточные ритмы выражаются в чередовании сна и бодрствования, колебаниях температуры тела в пределах 0,7—0,8° С (на рассвете она понижается, к полудню повышается, вечером достигает максимума, а затем снова понижается, особенна быстро после того, как человек заснет), циклах деятельности сердца и почек и т. д.

Живые организмы способны ориентироваться во времени, т. е. они обладают биологическими часами. Другими словами, для многих организмов характерна способность ощущать суточные, приливные, лунные и годичные циклы, что позволяет им заранее готовиться к предстоящим изменениям среды.

Температурные пределы жизни. Необходимость тепла для существования организмов обусловлена прежде всего тем, что все процессы жизнедеятельности возможны лишь на определенном тепловом фоне, определяемом количеством тепла и продолжительностью его действия. От температуры окружающей среды зависит температура организмов и, как следствие, скорость и характер протекания всех химических реакций, составляющих обмен веществ.

Границами существования жизни являются температурные условия, при которых не происходит денатурации белков, необратимого изменения коллоидных свойств цитоплазмы, нарушения активности ферментов, дыхания. Для большинства организмов этот диапазон температур составляет от 0 до +500. Однако ряд организмов обладает специализированными ферментными системами и приспособлен к активному существованию при температурах, выходящих за указанные пределы.

Виды, оптимальные условия жизнедеятельности которых приурочены к области высоких значений температур, относят к экологической группе термофилов (бактерии, населяющие термальные источники Камчатки с температурой воды 85—93°С, несколько видов зеленых водорослей, накипные лишайники, семена пустынных растений, находящиеся в верхнем раскаленном слое почвы. Температурный предел представителей животного мира обычно не превышает +55—58° С (раковинные амебы, нематоды, клещи, некоторые ракообразные, личинки многих двукрылых).

Растения и животные, сохраняющие активность при температуре от 0 до -8°С. относятся к экологической группе криофилов (греч. Kryos —холод, лед). Криофилия характерна для многих бактерии, грибов, лишайников, членистоногих и других существ, обитающих в тундрах, арктических и антарктических пустынях, в высокогорьях, холодных полярных водах и т. п.

Представители большинства видов живых организмов не обладают способностью активной терморегуляции своего тела. Их активность зависит, прежде всего, от тепла, поступающего извне, а температура тела — от величины температуры окружающей среды. Такие организмы называют пойкилотермными (эктотермными). Пойкилотермия свойственна всем микроорганизмам, растениям, беспозвоночным и большей части хордовых.

Только у птиц и млекопитающих тепло, вырабатываемое в процессе интенсивного обмена веществ, служит достаточно надежным источником повышения температуры тела и поддержания ее на постоянном уровне независимо от температуры окружающей среды. Этому способствует хорошая тепловая изоляция, создаваемая шерстным покровом, плотным оперением, толстым слоем подкожной жировой ткани. Такие организмы называют гомойотермними (эндотермными, или теплокровными). Свойство эндотермности позволяет многим видам животных (белым медведям, ластоногим, пингвинам и др.) вести активный образ жизни при низких температурах.

Частный случай гомойотермии — гетеротермия — свойственна животным, впадающим в неблагоприятный период года в спячку или временное оцепенение (суслики, ежи, летучие мыши, сони и др.). В активном состоянии они поддерживают высокую температуру тела, а в случае низкой активности организмапониженную, что сопровождается замедлением процессов обмена веществ и, как следствие, низкой теплоотдачей.

Экологическая роль волы. Вода является необходимым условием существования всех живых организмов на Земле. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, служит важнейшим исходным, промежуточным или конечным продуктом биохимических реакций.

При изучении экологической роли воды учитывается не только количество выпадающих осадков, но и соотношение их величины и испаряемости. Области, в которых испарение превышает годовую величину суммы осадков, называются аридными (сухими, засушливыми). В гумидных (влажных) областях растения обеспечены водой в достаточной мере.

Высшие наземные растения, ведущие прикрепленный образ жизни, в большей степени, чем животные, зависят от обеспеченности субстрата и воздуха влагой. Различают три основных группы растений:

Гигрофиты — растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. Наиболее типичные гигрофиты—травянистые растения и эпифиты влажных тропических лесов и нижних ярусов сырых лесов в разных климатических зонах. которые культурные растения.

Ксерофиты — растения сухих местообитаний, способные переносить продолжительную засуху, оставаясь физиологически активными. Это растения пустынь, сухих степей, саванн, сухих субтропиков, песчаных дюн и сухих, сильно нагреваемых склонов.

К группе ксерофитов относятся суккуленты — растения с сочными мясистыми листьями или стеблями, содержащими сильно развитую водоносную ткань. Различают листовые суккуленты (агавы, алоэ, молодило, очитки) и стеблевые, у которых листья редуцированы, а надземные части представлены мясистыми стеблями (кактусы, некоторые молочаи, стапелии и др.)..

Суккуленты приурочены главным образом к засушливым зонам Центральной Америки, Южной Африки, Средиземноморья.

Мезофиты занимают промежуточное положение между гигрофитами и ксерофитами. Они распространены в умеренно влажных зонах с умеренно теплым режимом и достаточно хорошей обеспеченностью минеральным питанием. К мезофитам относятся растения лугов, травянистого покрова лесов, лиственные деревья и кустарники из областей умеренно влажного климата, а также большинство культурных растений и сорняки. Для мезофитов характерна высокая экологическая пластичность, позволяющая им адаптироваться к меняющимся условиям внешней среды.

Адаптации животных к водному режиму. Способы регуляции водного баланса у животных разнообразнее, чем у растений. Их можно разделить на поведенческие, морфологические и физиологические.

К числу поведенческих приспособлений относятся поиски водоемов, выбор мест обитания, рытье нор и т. д. В норах влажность воздуха приближается к 100%, что снижает испарение через покровы, экономит влагу в организме.

К морфологическим способам поддержания нормального водного баланса относятся образования, способствующие задержанию воды в теле; это раковины наземных моллюсков, отсутствие кожных желез и ороговение покровов пресмыкающихся, хитинизированная кутикула насекомых и др.

Физиологические приспособления регуляции водного обмена можно разделить на три группы:

1) способность ряда видов к образованию метаболической воды и довольствованию влагой, поступающей с пищей (многие насекомые, мелкие пустынные грызуны);

2) способность к экономии влаги в пищеварительном тракте за счет всасывания воды стенками кишечника, а также образования высококонцентрированной мочи (овцы, тушканчики);

3) развитие выносливости к обезвоживанию организма благодаря особенностям кровеносной системы, эффективной терморегуляции потоотделением и отдачей воды со слизистых оболочек ротовой полости (верблюды, овцы, собаки).

Вместе с тем даже пойкилотермные животные не могут избежать потерь воды, связанных с испарением, поэтому основной путь сохранения водного баланса при жизни в пустыне — это избегание излишних тепловых нагрузок.

Биотическая среда. Распределение организмов в биосфере и их жизнедеятельность (питание, размножение, защита, расселение) неразрывно связаны не только с абиотической, но и с биотической средой — непосредственным живым окружением того или иного существа. Представители каждого вида способны существовать в такой биотической среде, в которой связи с остальными организмами обеспечивают им нормальные условия жизни. Основными формами проявления таких связей служат пространственные и пищевые (трофические) взаимоотношения, на базе которых формируются сложные цепи и сети питания.

Трофическая (пищевая) цепь — последовательность видов организмов, отражающая движение в экосистеме органических веществ и заключенной в них биохимической энергии в процессе питания организмов. Термин происходит от греч. трофепитание, пища.

Для дальнейшего изучения рассмотрим следующие термины: продуценты, консументы и редуценты.




Дата добавления: 2015-02-16; просмотров: 58 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав