Читайте также:
|
|
Метод деления весьма прост – используется остаток от деления на M:
h(K) = K mod M
Надо тщательно выбирать эту константу. Если взять ее равной 100, а ключом будет случить год рождения, то распределение будет очень неравномерным для ряда задач (идентификация игроков юношеской бейсбольной лиги, например). Более того, при четной константе значение функции будет четным при четном K и нечетным - при нечетном, что приведет к нежелательному результату. Еще хуже обстоят дела, если M – это степень счисления компьютера, поскольку при этом результат будет зависеть только от нескольких цифр ключа справа. Точно также можно показать, что M не должно быть кратно трем, поскольку при буквенных ключах два из них, отличающиеся только перестановкой букв, могут давать числовые значения с разностью, кратной трем (см. [3], стр. 552). Приведенные рассуждения приводят к мысли, что лучше использовать простое число. В большинстве случаев подобный выбор вполне удовлетворителен.
Другой пример – ключ, являющийся символьной строкой С++. Хеш-функция отображает эту строку в целое число посредством суммирования первого и последнего символов и последующего вычисления остатка от деления на 101 (размер таблицы). Эта хеш-функция приводит к коллизии при одинаковых первом и последнем символах строки. Например, строки «start» и «slant» будут отображаться в индекс 29. Так же ведет себя хеш-функция, суммирующая все символы строки. Строки «bad» и «dab» преобразуются в один и тот же индекс. Лучшие результаты дает хеш-функция, производящая перемешивание битов в символах.
На практике, метод деления – самый распространенный [7].
Метод умножения (мультипликативный)
Для мультипликативного хеширования используется следующая формула:
h(K) = [M * ((C * K) mod 1)]
Здесь производится умножение ключа на некую константу С, лежащую в интервале [0..1]. После этого берется дробная часть этого выражения и умножается на некоторую константу M, выбранную таким образом, чтобы результат не вышел за границы хеш-таблицы. Оператор [ ] возвращает наибольшее целое, которое меньше аргумента.
Если константа С выбрана верно, то можно добиться очень хороших результатов, однако, этот выбор сложно сделать. Дональд Кнут (см. [3], стр. 553) отмечает, что умножение может иногда выполняться быстрее деления.
Мультипликативный метод хорошо использует то, что реальные файлы неслучайны. Например, часто множества ключей представляют собой арифметические прогрессии, когда в файле содержатся ключи {K, K + d, K + 2d, …, K + td}. Например, рассмотрим имена типа {PART1, PART2, …, PARTN}. Мультипликативный метод преобразует арифметическую прогрессию в приближенно арифметическую прогрессию h(K), h(K + d), h(K + 2d),… различных хеш-значений, уменьшая число коллизий по сравнению со случайной ситуацией. Впрочем, справедливости ради надо заметить, что метод деления обладает тем же свойством.
Частным случаем выбора константы является значение золотого сечения φ = (√5 - 1)/2 ≈ 0,6180339887. Если взять последовательность {φ}, {2φ}, {3φ},... где оператор { } возвращает дробную часть аргумента, то на отрезке [0..1] она будет распределена очень равномерно. Другими словами, каждое новое значение будет попадать в наибольший интервал. Это явление было впервые замечено Я. Одерфельдом (J. Oderfeld) и доказано С. Сверчковски (S. Świerczkowski) (см. [8]). В доказательстве играют важную роль числа Фибоначчи. Применительно к хешированию это значит, что если в качестве константы С выбрать золотое сечение, то функция будет достаточно хорошо рассеивать ключи вида {PART1, PART2, …, PARTN}. Такое хеширование называется хешированием Фибоначчи. Впрочем, существует ряд ключей (когда изменение происходит не в последней позиции), когда хеширование Фибоначчи оказывается не самым оптимальным [3].
Дата добавления: 2015-02-16; просмотров: 74 | Поможем написать вашу работу | Нарушение авторских прав |