Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Применение первого закона к изопроцессам. Адиабатный процесс.

Читайте также:
  1. C. розробка статуту підприємства та формування господарського законодавства; Верно
  2. Cоциально- медицинская работа с инвалидами.
  3. Cоциально-медицинская работа с пожилыми людьми
  4. I. Русское государство при Василии III. Внутренняя и внешняя политика.
  5. II-й закон термодинаміки
  6. II. ЗАКОНЫ ПОСТОЯННОГО ТОКА
  7. II. Из данных слов выберите то, которое закончит предложение.
  8. II. Подзаконные
  9. II.2.3.Внутренняя норма прибыли инвестиции
  10. III тип. Для каждого вопроса, или, незаконченного утверждения один или несколько ответов являются правильными. Выберите по таблице.

 

План ответа

1. Внутренняя энергия и ее измерение. 2. Ра­бота в термодинамике. 3. Первый закон термодина­мики. 4. Изопроцессы. 5. Адиабатный процесс.

 

Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотиче­ски движутся и взаимодействуют друг с другом, по­этому любое тело обладает внутренней энергией. Внутренняя энергия — это величина, характери­зующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц си­стемы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Внутренняя энергия одноатомного идеального газа определяется по формуле U=3/2 • т/М • RT.

Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существуют два способа изменения внутрен­ней энергии: теплопередача и совершение механи­ческой работы (например, нагревание при трении или при сжатии, охлаждение при расширении).

Теплопередача — это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопере­дача бывает трех видов: теплопроводность (непо­средственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излуче­ние (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче яв­ляется количество теплоты (Q).

Эти способы количественно объединены в за­кон сохранения энергии, который для тепловых про­цессов читается так. Изменение внутренней энергии замкнутой системы равно сумме количества теп­лоты, переданной системе, и работы, внешних сил, совершенной над системой. D U= Q + А, где D U— изменение внутренней энергии, Q — количество теп­лоты, переданной системе, А — работа внешних сил. Если система сама совершает работу, то ее условно обозначают А'. Тогда закон сохранения энергии для тепловых процессов, который называется первым за­коном термодинамики, можно записать так: Q = Α' + D U, т. е. количество теплоты, переданное систе­ме, идет на совершение системой работы и измене­ние ее внутренней энергии.

При изобарном нагревании газ совершает ра­боту над внешними силами Α' = p(V1-V2) = pΔV, где

V1, и V2 начальный и ко­нечный объем газа. Если про­цесс не является изобарным, величина работы может быть определена площадью фигу­ры, заключенной между ли­нией, выражающей зависи­мость p(V) и начальным и ко­нечным объемом газа (рис. 13).

Рассмотрим применение первого закона тер­модинамики к изопроцессам, происходящим с иде­альным газом.

 

В изотермическом процессе температура по­стоянная, следовательно, внутренняя энергия не ме­няется. Тогда уравнение первого закона термодина­мики примет вид: Q = А', т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому темпе­ратура не изменяется.

В изобарном процессе газ расширяется и ко­личество теплоты, переданное газу, идет на увеличе­ние его внутренней энергии и на совершение им ра­боты: Q = D U + А'.

При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е., А = О, и уравнение первого закона имеет вид:

Q = D U, т. е. переданное количество теплоты идет на увеличение внутренней энергии газа.

Адиабатным называют процесс, протекающий без теплообмена с окружающей средой. Q = 0, следо­вательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следова­тельно, газ охлаждается, Α' = D U. Кривая, изобра­жающая адиабатный процесс, называется адиабатой.

 

Билет № 12

Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда

 

План ответа

1. Электрический заряд. 2. Взаимодействие за­ряженных тел. 3. Закон сохранения электрического заряда. 4. Закон Кулона. 5. Диэлектрическая проницаемость. 6. Электрическая постоянная. 7. Направ­ление кулоновских сил.

Законы взаимодействия атомов и молекул удается понять и объяснить на основе знаний о строении атома, используя планетарную модель его строения. В центре атома находится положительно заряженное ядро, вокруг которого вращаются по определенным орбитам отрицательно заряженные частицы. Взаимодействие между заряженными час­тицами называется электромагнитным. Интенсив­ность электромагнитного взаимодействия опреде­ляется физической величиной — электрическим за­рядом, который обозначается q. Единица измерения электрического заряда — кулон (Кл). 1 кулон — это такой электрический заряд, который, проходя через поперечное сечение проводника за 1 с, создает в нем ток силой 1 А. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух ви­дов зарядов. Один вид заряда назвали положитель­ным, носителем элементарного положительного за­ряда является протон. Другой вид заряда назвали отрицательным, его носителем является электрон. Элементарный заряд равен е=1,6•10-19 Кл.

Заряд тела всегда представляется числом, кратным величине элементарного заряда: q=e(Np-Ne) где Np количество электронов, Ne количество протонов.

Полный заряд замкнутой системы(в которую не входят заряды извне), т. е. алгебраическая сумма зарядов всех тел остается постоянной: q1 + q2 +...+qn = const. Электрический заряд не создается и не исчезает, а только переходит от одного тела к друго­му. Этот экспериментально установленный факт на­зывается законом сохранения электрического заря­да. Никогда и нигде в природе не возникает и не ис­чезает электрический заряд одного знака. Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами эле­ментарных заряженных частиц — электронов — от одних тел к другим.

Электризация — это сообщение телу электри­ческого заряда. Электризация может происходить, например, при соприкосновении (трении) разно­родных веществ и при облучении. При электризации в теле возникает избыток или недостаток электронов.

В случае избытка электронов тело приобретает отрицательный заряд, в случае недостатка — поло­жительный.

Законы взаимодействия неподвижных элек­трических зарядов изучает электростатика.

Основной закон электростатики был экспери­ментально установлен французским физиком Шар­лем Кулоном и читается так. Модуль силы взаимо­действия двух точечных неподвижных электриче­ских зарядов в вакууме прямо пропорционален про­изведению величин этих зарядов и обратно пропор­ционален квадрату расстояния между ними.

F = k • q1q2/r2, где q1 и q2 — модули зарядов, r — расстояние между ними, k — коэффициент пропор­циональности, зависящий от выбора системы еди­ниц, в СИ k = 9 • 109 Н • м2/Кл2. Величина, показывающая во сколько раз сила взаимодействия зарядов в вакууме больше, чем в среде, называется диэлектрической проницаемостью среды ε. Для среды с диэлектрической проницае­мостью ε закон Кулона записывается следующим об­разом: F= k • q1q2/(ε•r2)

Вместо коэффициента k часто используется коэффициент, называемый электрической постоян­ной ε0. Электрическая постоянная связана с коэффи­циентом k следующим образом k = 1/4π ε0 и численно равна ε0 =8,85 • 10-12 Кл/Н • м2.

С использованием электрической постоянной закон Кулона имеет вид:F=(1/4π ε0 )• (q1q2 /r2)

Взаимодействие неподвижных электрических зарядов называют электростатическим, или кулоновским, взаимодействием. Кулоновские силы мож­но изобразить графически (рис. 14, 15).

Кулоновская сила направлена вдоль прямой, соединяющей заряженные тела. Она является силой притяжения при разных знаках зарядов и силой от­талкивания при одинаковых знаках.

 

Билет № 14

 

Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи

План ответа

1. Работа тока. 2. Закон Джоуля—Ленца 3. Элек­тродвижущая сила. 4. Закон Ома для полной цепи.

В электрическом поле из формулы определе­ния напряжения (U = A/q) легко получить выраже­ние для расчета работы переноса электрического за­ряда А = Uq, так как для тока заряд q = It, то работа тока: А = Ult, или А = I2R t = U2/R • t.

Мощность, по определению, N = A/t, следова­тельно, N = UI = I2 R = U2/R.

Русский ученый X. Ленц и английский уче­ный Джоуль опытным путем в середине прошлого века установили независимо друг от друга закон, который называется законом Джоуля—Ленца и чи­тается так. При прохождении тока по проводнику количество теплоты, выделившейся в проводнике, прямо пропорционально квадрату силы, тока, со­противлению проводника и времени прохождения тока.

Q = I 2Rt.

 

Полная замкнутая цепь представляет собой электрическую цепь, в состав которой входят внеш­ние сопротивления и источник то­ка (рис. 18). Как один из участков цепи, источник тока обладает со­противлением, которое называют внутренним, г.

Для того чтобы ток проходил по замкнутой цепи, необходимо, чтобы в источнике тока зарядам сообщалась дополнительная энергия, она берется за счет работы по перемещению зарядов, которую про­изводят силы неэлектрического происхождения (сто­ронние силы) против сил электрического поля. Ис­точник тока характеризуется энергетической харак­теристикой, которая называется ЭДС — электродви­жущая сила источника. ЭДС — характеристика источника энергии неэлектрической природы в электрической цепи, необходимого для поддержания в ней электрического тока. ЭДС измеряется отноше­нием работы сторонних сил по перемещению вдоль замкнутой цепи положительного заряда к этому за­ряду ξ= Aст/q

Пусть за время t через поперечное сечение проводника пройдет электрический заряд q. Тогда работу сторонних сил при перемещении заряда мож­но записать так: Aст = ξ q. Согласно определению си­лы тока q = It, поэтому Aст = ξ I t. При совершении этой работы на внутреннем и внешнем участках це­пи, сопротивления которых R и г, выделяется неко­торое количество теплоты. По закону Джоуля— Ленца оно равно: Q =I2Rt + I2rt. Согласно закону со­хранения энергии А = Q. Следовательно, ξ•= IR + Ir. Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так: I = ξ /(R + r). Эту зависимость опытным путем получил Г. Ом, называется она законом Ома для полной цепи и читается так. Сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи. При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.

 

Билет № 15




Дата добавления: 2015-02-16; просмотров: 155 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав