Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Момент инерции как мера инерции при вращательном движении. Момент инерции материальной точки и твердого тела. Момент инерции простейших тел вращения. Теорема Штейнера.

Читайте также:
  1. A. с момента заключения договора
  2. А с точки зрения Мантра йоги мы-то с вами кто?
  3. А также опорных моментов
  4. А)Определители 2-го,3-го и п-го порядков (определения и из св-ва). б)Теорема Лапласа о разложении определителя по элементам строки или столбца.
  5. Альтернативные правила принятия коллективных решений. Теорема Эрроу о невозможности.
  6. Альтернативные точки зрения на предмет информатики (Р. Хемминг, Г. Саймон, Д. Кнут, М. Минский, Ст. Шапиро, А. Ершов)
  7. Аморфные тела.
  8. Атомисты (Демокрит, Эпикур) видят душу смертной, состоящей из атомов, рассеивающихся в пространстве при разрушении тела.
  9. БАЗА ДАННЫХ, КАРТОЧКИ И КАТЕГОРИИ
  10. Белгородчина в олимпийском движении. Лучшие спортсмены -олимпийцы Белгородчины.

Моментом терции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс п материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина rв этом случае есть функция положения точки с координатами х, у, z.

 

Рис. 23

 

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси (рис. 23). Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины drсвнутренним радиусом rи внешним r+dr. Момент инерции каждого полого цилиндра dJ = r2dm(так как dr << r, то считаем, что расстояние всех точек цилиндра от оси равно г), где dm — масса всего элементарного цилиндра; его объем 2prhdr. Если r— плотность материала, то dm = 2prhrdr и dJ = 2phrr3dr. Тогда момент инерции сплошного цилиндра

но так как pR2h— объем цилиндра, то его масса m = pR2hr, а момент инерции

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно произвольной оси равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями:

(16.1)

В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).

Таблица 1

 

Тело Положение оси Момент инерции
Полый тонкостенный цилиндр радиусом R Сплошной цилиндр или диск радиусом R Прямой тонкий стержень длиной l Прямой тонкий стержень длиной l Шар радиусом R Ось симметрии   Тоже   Ось перпендикулярна стержню и проходит через его середину Ось перпендикулярна стержню и проходит через его конец Ось проходит через центр шара тR2   1/2 тR2   1/12 ml2 1/3 ml2   2/5 тR2  



Дата добавления: 2015-01-30; просмотров: 89 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав