Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Классификация и краткая характеристика мониторов на плоских панелях.

Читайте также:
  1. A1. Сущность и классификация организаций. Жизненный цикл организации и специфика управления на различных его этапах.
  2. CASE-средства. Общая характеристика и классификация
  3. Cудебник 1497 г. Общая характеристика
  4. Cудебник 1550 г. Общая характеристика, система и источники
  5. I. Генеалогическая классификация индоевропейских языков А. Мейе.
  6. I. КВАЛИФИКАЦИОННАЯ ХАРАКТЕРИСТИКА ВЫПУСКНИКА
  7. I. Классификация лекарственных форм по агрегатному состоянию.
  8. I. Общая характеристика жанровой системы связей с общественностью.
  9. I. Этиологическая характеристика
  10. II Классификация основных видов загрязнителей окружающей среды.

ЖК мониторы
Работа ЖК-мониторов основана на свойстве некоторых веществ проявлять анизотропию в текучем ("жидком") состоянии. Для изготовления ЖК-мониторов используют так называемые нематические кристаллы, молекулы которых имеют форму палочек или вытянутых пластинок. В отсутствии электрического поля молекулы этого вещества образуют скрученные спирали. В результате такой ориентации молекул плоскость поляризации проходящего света поворачивается. Если же к прозрачным электродам приложено напряжение, спираль молекул распрямляется (они ориентируются вдоль поля), при этом поворота плоскости поляризации проходящего света не происходит. Используя подходящим образом ориентированный пленочный поляризатор, можно добиться, чтобы в первом случае ЖК-элемент пропускал проходящий свет, а во втором - нет.
Таким образом, каждая точка изображения на ЖК-мониторе представляет из себя соответствующий -элемент, а весь экран - матрицу этих элементов. Для адресации ЖК-элементов можно использовать два метода: прямой (пассивный) и косвенный (активный). При прямой адресации элементов каждая выбираемая точка изображения активируется подачей напряжения на соответствующий проводник-электрод для строки (общий для целой строки) и на проводник-электрод для столбца (общий для всего столбца). Матрицы с пассивным управлением ("пассивные матрицы") имеют недостаточный контраст изображения, т.к. электрическое поле возникает не только в точке пересечения адресных проводников, но и на всем пути распространения тока. Эта проблема решается при использовании так называемых активных матриц, когда каждой точкой изображения управляет свой независимый электронный переключатель.
При применении активных матриц большое значение имеют такие параметры, как малое время отклика (типичное значение - 10-25 мкс) и большой угол зрения (75o-120o).
Достоинства ЖК:
- низкое энергопотребление
- габариты и легкость
- полное использование поверхности экрана
- отсутствие излучения
Недостатки:
- более низкое качество изображения
- низкая контрастность
- искажение цветопередачи от угла зрения
- относительно низкая динамика смены картинок
Плазменные дисплеи (PDP) создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например аргоном или неоном. Затем на стеклянную поверхность наносят миниатюрные прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом человеком.
Фактически каждый пиксель на экране работает как обычная лампа дневного света. Высокая яркость и контрастность наряду с отсутствием дрожания являются важнейшими преимуществами таких мониторов. Кроме того, угол по отношению к нормали, под которым можно увидеть изображение на плазменных мониторах, существенно больше, чем у ЖК-мониторов. Основными недостатками такого типа мониторов являются высокая потребляемая мощность, возрастающая при увеличении диагонали монитора, и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме того, свойства люминофорных элементов со временем ухудшаются, и экран становится менее ярким, поэтому срок службы плазменных мониторов ограничен 10 000 ч, что составляет около 5 лет при интенсивном использовании. Из-за этих ограничений подобные мониторы используются пока только для конференций, презентаций, информационных щитов, т.е. там, где требуются большие размеры экрана для отображения информации.
Электролюминесцентные мониторы (ELD) по своей конструкции аналогичны ЖК-мониторам. Принцип действия электролюминесцентных мониторов основан на явлении испускании света при возникновении туннельного эффекта в полупроводниковом переходе. Такие мониторы имеют высокие частоты развертки и яркость свечения, кроме того, они надежны в работе.

Однако они уступают ЖК-мониторам по энергопотреблению, поскольку на ячейки подается относительно высокое напряжение – около 100 В. При ярком освещении цвета электролюминесцентных мониторов тускнеют.
Мониторы электростатической эмиссии (FED) являются сочетанием традиционной технологии, основанной на использовании ЭЛТ, и жидкокристаллической технологии. Мониторы FED основаны на процессе, который несколько похож на тот, что применяется в ЭЛТ-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. В качестве пикселей применяются такие же зерна люминофора, как и в ЭЛТ-мониторе, что позволяет получить чистые и сочные цвета, свойственные обычным мониторам. Однако активизация этих зерен производится не электронным лучом, а электронными ключами, подобными тем, что используются в ЖК-мониторах, построенных по TFT-технологии. Управление этими ключами осуществляется специальной схемой, принцип действия которой аналогичен принципу действия контроллера ЖК-монитора.
Для функционирования монитора электростатической эмиссии необходимо высокое напряжение – около 5000 В. Энергопотребление мониторов электростатической эмиссии значительно выше, чем ЖК-мониторов, но на 30 % ниже, чем энергопотребление ЭЛТ-мониторов с экраном того же размера. В настоящее время эта технология обеспечивает наилучшее качество изображения среди всех плоскопанельных мониторов и самую низкую инерционность (около 5 мкс).
Органические светодиодные мониторы (OLEDs), или LEP-мониторы (светоизлучающий пластик), по своей технологии похожи на ЖК-и ELD-мониторы, но отличаются материалом, из которого изготавливается экран: в LEP-мониторах используется специальный органический полимер (пластик), обладающий свойством полупроводимости. При пропускании электрического тока такой материал начинает светиться.
Основные преимущества технологии LEP по сравнению с рассмотренными:
– низкое энергопотребление (подводимое к пикселю напряжение менее 3 В);
– простота конструкции и технологии изготовления;
– тонкий (около 2 мм) экран;
– малая инерционность (менее 1 мкс).
К существенным недостаткам этой технологии следует отнести малую яркость свечения экрана; малый размер экрана. LEP-мониторы используются пока только в портативных устройствах, например, в сотовых телефонах.

 




Дата добавления: 2015-02-16; просмотров: 89 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав