Читайте также:
|
|
Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.
Система счисления:
· даёт представления множества чисел (целых и/или вещественных);
· даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
· отражает алгебраическую и арифметическую структуру чисел.
Системы счисления подразделяются на позиционные, непозиционные и смешанные.
Чем больше основание системы счисления, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа в позиционных системах счисления.
Двоичная, восьмеричная и шестнадцатеричная СС.
Двоичная система счисления - это позиционная система счисления с основанием 2. В этой системе счисления, числа записываются с помощью двух символов (0 и 1). Двоичная система счисления является частным случаем сдвоенных двоичных показательных позиционных систем счисления с обоими основаниями (a и b) равными 2.
Восьмери́чная систе́ма счисле́ния — позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.
Восьмеричная система часто используется в областях, связанных с цифровыми устройствами. Характеризуется лёгким переводом восьмеричных чисел в двоичные и обратно, путём замены восьмеричных чисел на триплеты двоичных. Ранее широко использовалась в программировании и вообще компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной.
Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
Перевод чисел из одной СС в другую.
Можно сформулировать алгоритм перевода целых чисел из системы с основанием p в систему с основанием q:
1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие действия производить в исходной системе счисления.
2. Последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, меньшее делителя.
3. Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.
4. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.
Дата добавления: 2015-01-30; просмотров: 170 | Поможем написать вашу работу | Нарушение авторских прав |