Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Системы счисления (СС) и их классификация. Полиномиальное представление чисел в различных СС.

Читайте также:
  1. A1. Сущность и классификация организаций. Жизненный цикл организации и специфика управления на различных его этапах.
  2. C) Передача знаний из различных областей наук.
  3. EIS и DSS системы.
  4. I. Судебно-следственная практика формирования системы доказательств по уголовному делу (постановка проблемы).
  5. V. Представление и проверка контрольной работы
  6. V2: Патофизиология иммунной системы
  7. А) Дидактические системы.
  8. А) ухудшение продовольственного снабжения, распространение карточной системы В) недовольство крестьян аграрной политикой Хрущева
  9. А. Структура системы управления корпоративными финансами
  10. Абсолютные и относительные показатели вариации назначение, формулы исчисления достоинства и недостатки.

Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.

Система счисления:

· даёт представления множества чисел (целых и/или вещественных);

· даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

· отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на позиционные, непозиционные и смешанные.

Чем больше основание системы счисления, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа в позиционных системах счисления.

 


Двоичная, восьмеричная и шестнадцатеричная СС.

Двоичная система счисления - это позиционная система счисления с основанием 2. В этой системе счисления, числа записываются с помощью двух символов (0 и 1). Двоичная система счисления является частным случаем сдвоенных двоичных показательных позиционных систем счисления с обоими основаниями (a и b) равными 2.

Восьмери́чная систе́ма счисле́ния — позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.

Восьмеричная система часто используется в областях, связанных с цифровыми устройствами. Характеризуется лёгким переводом восьмеричных чисел в двоичные и обратно, путём замены восьмеричных чисел на триплеты двоичных. Ранее широко использовалась в программировании и вообще компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной.

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

 

Перевод чисел из одной СС в другую.

Можно сформулировать алгоритм перевода целых чисел из системы с основанием p в систему с основанием q:

1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие действия производить в исходной системе счисления.

2. Последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, меньшее делителя.

3. Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.

4. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.

 




Дата добавления: 2015-01-30; просмотров: 170 | Поможем написать вашу работу | Нарушение авторских прав

1 | <== 2 ==> | 3 | 4 | 5 | 6 |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав