Читайте также:
|
|
План:
1. 1. Механизмы передачи генетической информации – репликация, транскрипция, трансляция (биосинтез белка)
2. 2. Регуляция экспрессии генов (биосинтеза белка)
Механизмы передачи генетической информации – репликация, транскрипция, трансляция (биосинтез белка)
Передача генетической информации осуществляется с помощью трех механизмов: репликации, транскрипции, трансляции.
Репликация (досл. «удвоение» ДНК) – это многоэтапный, упорядоченный процесс, идущий по матрице ДНК в направлении 5`à3`, в результате которого из каждой молекулы ДНК образуется 2 абсолютно идентичные, «дочерние» ДНК. С репликации ДНК начинается процесс деления клетки. Репликация ДНК начинается на многих участках (репликативных единицах) и идет одновременно по обеим цепям.
Репликация идет полуконсервативным путем: у каждой дочерней ДНК одна из цепей – исходная (материнская), а вторая вновь образованная (дочерняя) (опыты Мезельсона и Сталя). В процессе репликации участвует около 30 белков и ферментов, образующих репликативный комплекс: расплетающие ферменты (хеликаза и ДНК-топоизомеразы), ДНК-полимеразы, ДНК-лигазы, ДНК-зависимые РНК-полимеразы.
В геноме человека репликация происходит в течение 9 часов. Это необходимо для образования тетраплоидного генома из диплоидного в реплицирующейся клетке. Для репликации необходимо наличие множественных мест репликации (репликативных единиц – их около 100).
Этапы репликации
1. Идентификация места начала репликации: оно находится вблизи регионов, богатых А-Т (ori-сайты). Таких сайтов должно быть не менее 100. В каждом сайте к ДНК присоединяются 4 молекулы особого белка – O-белка.
2. Раскручивание ДНК: в местах присоединения О-белков начинается локальное раскручивание ДНК, при этом образуются репликативные пузыри. В этом процессе участвуют хеликаза и ДНК-связывающий белок, обозначаемый как SSB-белок (от англ. single-strand binding protein). SSB-белок стабилизирует связь хеликазы с ДНК и поддерживает ДНК в раскрученном состоянии.
3. Образование репликативной вилки: при раскручивании происходит разрыв водородных связей между азотистыми основаниями полинуклеотидных цепей, при этом происходит расхождение цепей и образуется репликативная вилка. 2 и 3 этапы ускоряет АТФ-зависимый комплекс ферментов, названный хеликазой (геликазой). На разделение каждой пары оснований требуется 2 АТФ. Кроме этого в раскручивании участвуют ДНК-топоизомеразы – АТФ-независимые ферменты. Каждая из разделенных цепей ДНК соединяется с ДНК-связывающим белком (SSB-белок), который препятствует обратному восстановлению цепей
4. Комплиментарная подстройка дНТФ к освободившимся пуриновым и пиримидиновым основаниям материнских цепей ДНК. При этом происходит отщепление от дНТФ молекул пирофосфатов (РР), а выделяющаяся энергия идет на образование фосфорнодиэфирных связей между дезоксирибозами и остатками фосфорной кислоты. Эту стадию ускоряет ДНК-полимеразы. У человека имеется 5 видов ДНК-полимераз: альфа (участвует в заполнении пробела и синтезе ретроградной (отстающей цепи), бета (участвует в репарации ДНК), эпсилон (обеспечивает правильность считывания информации и в репарации ДНК), гамма (участвует в синтезе митохондриальных ДНК), сигма (участвует в синтезе ведущей (лидирующей) цепи). Синтез новых цепей идет в направлении 5à3, поэтому на одной из цепей материнской ДНК новая цепь наращивается непрерывно. На другой цепи образуются короткие фрагменты новой цепи – фрагменты Оказаки. Затем концы этих фрагментов соединяются (сшиваются) между собой под действием ДНК-лигазы.
5. респирализация полинуклеотидных цепей и образование третичной и четвертичной структур ДНК.
Т.о., происходит образование дочерней молекулы ДНК. Затем делится ядро, цитоплазма, другие клеточные структуры. Заканчивается процесс образованием 2-х дочерних клеток, ядра которых получили совершенно идентичные ДНК. Т.о., вся генетическая информация, хранящаяся в ДНК материнских клеток, передается в ДНК дочерних клеток. В этом заключается передача и сохранение наследственных признаков.
Вторая роль ДНК заключается в кодировании первичной структуры белков, синтезируемых клеткой. При этом в синтезе специфических белков ДНК принимает косвенное, а не прямое участие. Оно состоит в том, что на ДНК происходит синтез всех РНК, которые уже непосредственно участвуют в процессе образования клеточных белков. Синтез молекул РНК называется транскрипцией.
Репликация происходит только в определенный период жизни клетки. Этот период является S-фазой клеточного цикла. S-фаза отделяется от митоза G1 и G2-промежутками. В ходе G1 клетка подготавливается к S-фазе; в G2 клетка подготавливается к митозу. Все эукариотические клетки имеют особые белки, которые контролируют переход одной фазы клеточного цикла в другую. К таким белкам-регуляторам относятся циклины. Эти белки активируют циклин-зависимые протеин-киназы – ферменты, которые фосфорилируют субстраты, необходимые для клеточного цикла. Различают Д-циклины, которые способствуют переходу клетки из G1 в S-фазу; Е- и А-циклины, которые инициируют репликацию в ранней S-фазе; В-циклины способствуют переходу G2 в митоз. Многие онковирусы и онкогены способны нарушать переход клетки из G1 в S-фазу. Это сопровождается неконтролируемым делением клетки.
Транскрипция (досл. «переписывание» информации с ДНК на РНК)
При транскрипции идет синтез молекул РНК всех типов, т.к. на молекуле ДНК имеются участки, кодирующие первичную структуру каждого вида РНК. Участок ДНК, где записана информация о строении РНК, называется транскриптон, или оперон. Транскрипция – это переписывание генетической информации с определенного оперона ДНК. Этот процесс имеет как сходства, так и различия с репликацией.
Сходства: 1) оба процесса начинаются с деспирализации ДНК; 2) после деспирализации разрываются водородные связи между азотистыми основаниями обеих цепей ДНК и образуется репликативная вилка; 3) за счет разрыва макроэргических связей при отщеплении пирофосфатов идет образование фосфодиэфирных связей между азотистыми основаниями.
Отличия: 1) при репликации ДНК деспирализуется на всем протяжении, а при транскрипции только определенный ее участок, который называется транскриптоном. В транскриптоне различают ген-оператор, ген-промотор, структурные гены и терминирующие гены; 2) при транскрипции используются НТФ (в отличие от дНТФ в них рибоза вместо дезоксирибозы; урацил вместо тимина); 3) при транскрипции списывание информации идет только с определенного транскриптона; 4) полимеразная реакция при транскрипции катализируется РНК-полимеразой. Различают три вида РНК-полимеразы, которые обозначаются римскими цифрами. Каждый вид фермента катализирует синтез одного из трех видов РНК. РНК-полимераза присоединяется к гену-промотору. Для активности этого фермента необходим дополнительный белковый фактор (сигма-фактор), который способствует более прочному связыванию РНК-полимеразы с промотором. Синтез РНК происходит в направлении 5`à3`. По мере освобождения промотора к нему могут присоединяться новые молекулы РНК-полимеразы, так что ген может транскрибироваться одновременно большим количеством молекул фермента. При достижении ферментом терминирующего кодона, синтезированная пре-РНК отделяется от ДНК. В этом процессе участвует особый белковый фактор – ро-фактор; 5) посттранскрипционная модификация молекул пре-РНК (процессинг РНК).
Для нормального функционирования любой РНК необходимо, чтобы ее первичная структура состояла только из участков, списанных с экзонов ДНК. Первоначально образованные РНК еще незрелые и называются пре-м-РНК, пре-т-РНК, пре-р-РНК. Эти пре-РНК подвергаются процессингу. Вначале с участием специальных ферментов вырезаются «молчащие» участки, а затем информативные участки «сшиваются», образуя целую полинуклеотидную цепь. «Сшивание» называется сплайсингом. Последующие превращения специфичны для каждого вида РНК.
Для м-РНК – это кэпирование или «надевание шапочки», т.е присоединение к начальному концу (к 5’) участку 7-метилгуанозина через три остатка фосфорной кислоты, это «голова» м-РНК. К конечному участку (к 3’) в ядре или в цитоплазме присоединяется полиаденилат (состоит из 100-200 остатков АМФ), образуется «хвост» м-РНК. Такая маркировка необходима для обозначения направления считывания информации в процессе биосинтеза белка.
Для т-РНК Молекулы т-РНК вначале образуются в виде больших предшественников, которые часто содержат более одной молекулы т-РНК, подвергающихся нуклеолитическому процессингу. После освобождения от неинформативных участков в т-РНК происходит модификация оснований – появляются минорные основания (в результате метилирования и др. реакций). К 3` концу т-РНК в цитоплазме присоединяется ЦЦА-триплет. Он служит местом прикрепления соответствующей аминокислоты.
Дата добавления: 2015-04-11; просмотров: 144 | Поможем написать вашу работу | Нарушение авторских прав |