Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Поверхности вращения.

Читайте также:
  1. Астрономические координаты определяют положение точки на поверхности геоида.
  2. вводные выключатели секций шин ГПП; 2—секционный выключатель; 5—10—фидерные выключатели электроприемников поверхности; 11—26—выключатели
  3. Влияние качества поверхности на эксплуатационные свойства деталей машин (зависимости износа от времени, шероховатости поверхности, микротвердости, остаточных напряжений).
  4. ВОПРОС 50. ЕСКД ГОСТ 2.309 – 73. ОБОЗНАЧЕНИЕ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ.
  5. Зависимость фаски износа по задней поверхности от времени работы инструмента.
  6. Использование массажных приемов на задней поверхности голени
  7. КАЧЕСТВО ПОВЕРХНОСТИ ДЕТАЛЕЙ МАШИН И ЗАГОТОВОК. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
  8. Кора больших полушарий: ее поверхности, доли, основные борозды и извилины. Зоны коры больших полушарий.
  9. Коэффициент шероховатости поверхности
  10. На контактной поверхности моляров

Поверхность, образованная вращением некоторой плоской кривой вокруг оси,

лежащей в ее плоскости, называется поверхностью вращения. Пусть некоторая

кривая L лежит в плоскости Oyz. Уравнение этой кривой запишутся в виде:

Найдем уравнение поверхности, образованной вращением кривой L вокруг оси Oz.

Возьмем на поверхности точку

M (x;y;z). Проведем через точку

М плоскость, перпендикулярную

оси oz, и обозначим точки

пересечения ее с осью oz

и кривой L соответственно O1 и N.

Обозначим координаты точки

N (0;y1;z1). Отрезки O1M и O1N

являются радиусами одной и той же окружности. Поэтому O1M = O1

N. Но O1M = (x2+y2)0.5, O1

N=|y1|.

Следовательно, |y1|=(x2+y2)0.5 или y1=±(x2+y2)0.5. Кроме того, очевидно, z1=z.

Следовательно

искомое уравнение поверхности вращения, ему удовлетворяют координаты любой

точка М этой поверхности и не удовлетворяет координаты точек, не лежащих на

поверхности вращения.

27. Поверхности 2-го порядка. Эллипсоид, Гиперболоид.

Эллипсоид.

Рассмотрим сечение поверхности с плоскостями, параллельными xOy. Уравнения

таких плоскостей z=h, где h – любое число. Линия, получаемая в сечении,

определяется двумя уравнениями:

Если |h|>c, c>0, то точек пересечения поверхности с плоскостями z=h нет.

Если |h|=c, т.е. h=±c, то

. Линия пересечения вырождается в две точки (0;0;с) и (0;0;-с). Плоскости z=c и

z=–c касаются поверхности.

Если |h|<c, то уравнения можно переписать в виде:

Линия пересечения есть эллипс с полуосями.

Эллипсоид – замкнутая овальная поверхность, где a,b,с – полуоси. Если все

они различны, то эллипсоид называется трехосным. Если какие-либо две

полуоси равны, то тело называется эллипсоид вращения, если a=b=c, то тело

называется сферой x2+y2+z2=R2

Однополостный гиперболоид.

Пересекая поверхность плоскостью z=h, получим линию пересечения, уравнения

которой имеют вид.

Полуоси достигают своего наименьшего значения при h=0, a1=a, b1

=b. При возрастании |h| полуоси будут увеличиваться.

Если пересекать поверхность плоскостями x=h или y=h, то в сечении получим

гиперболы. Найдем линию пересечения поверхности с плоскостью Oyx, уравнение

которой x=0. Эта линия пересечения описывается уравнениями:

Поверхность имеет форму бесконечно расширяющейся трубки и называется

однополостным гиперболоидом.

Двуполостный гиперболоид.

Если поверхность пересечь плоскостями z=h, то линия пересечение уравнениями

Если |h|<c, то плоскости z=h не пересекаются.

Если |h|=c, то плоскости h=±c касаются данной поверхности соответственно в

точках (0;0;с) и (0;0;-с).

Если |h|>c, то уравнения можно переписать в виде:

Эти уравнения определяют эллипс, полуоси которого возрастают с ростом |h|.

У обеих гипербол действительной осью является ось oz. Метод сечения позволяет

изобразить поверхность, состоящую из двух полостей, имеющих форму двух

неограниченных чаш. Поверхность называется двуполостным гиперболоидом.




Дата добавления: 2015-04-20; просмотров: 102 | Поможем написать вашу работу | Нарушение авторских прав

1 | 2 | 3 | <== 4 ==> |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.468 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав