Читайте также:
|
|
Уравнение плоскости, проходящей через заданную точку, перпендикулярно данному
вектору.
Пусть плоскость задана точкой M0(x0;y0;z0
) и вектором ,
перпендикулярной этой плоскости.
Возьмем произвольную точку M(x;y;z) и составим вектор
. При любом расположении точки М на плоскости Q
, поэтому .
Общее уравнение плоскости.
· Если D=0, то данному уравнению удовлетворяет точка О (0;0;0)
· Если С=0 то вектор
. Следовательно, плоскость параллельна оси oz, если В=0 – то oy, если А=0 – то ox.
· Если C=D=0, то плоскость проходит через О (0;0;0), параллельно оси oz. Аналогично при A=D=0 и B=D=0.
· Если А=В=0 то уравнение примет вид плоскость параллельна плоскости Oxy.
· Если A=B=D=0, то уравнение имеет вид . Это уравнение плоскости Oxy.
Уравнение плоскости, проходящей через три точки
К (х1;у1) М (х2;у2) N (x3;y3)
Возьмем на плоскости точку P (x;y;z).
Составим векторы:
Эти векторы лежат в одной плоскости, следовательно они компланарны:
Уравнение плоскости в отрезках.
Пусть плоскость отсекает на осях отрезки, т.е. проходит через точки:
;
;
Нормальное уравнение плоскости.
Дата добавления: 2015-04-20; просмотров: 76 | Поможем написать вашу работу | Нарушение авторских прав |