Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Basic Properties of Definite Integrals

Читайте также:
  1. Basic Content of the Concept
  2. Basic gas laws.
  3. Chemical properties of acids.
  4. Ex.8. Put the verbs in brackets into the Past Indefinite or Past Continuous Passive.
  5. Exercise 12. Insert the Past Indefinite or Past Perfect.
  6. Exercise 29. Comment on the use ot the Present Indefinite, Present Continuous, Present Perfect and Present Perfect Continuous.
  7. Exercise 30. Insert the Present Indefinite, Present Continuous, Present Perfect, or Present Perfect Continuous.
  8. Exercise 32. Comment on the use of the Past Indefinite, Past Continuous, Past Perfect and Past Perfect Continuous.
  9. Exercise II. Definite the ways in which the Ukrainian units of the national lexicon are translated (or should be translated) into English.

Definite Integral

Lecture 34 Definite Integral. Basic Properties of Definite Integral

Definition Let be a continuous function defined on divide the interval by the points

from to into subintervals ( not necessarily equal width) such that when , the length of each subinterval will tend to zero.

 
 

In the ith subinterval choose for . If

 

exists and is independent of the particular choice of and , then we have

(1)

For equal width, i.e. divide into equal subintervals of length, i.e. , we have

.

Choose and , hence

.

Definition If for a function the limit (1) exists, then we say the function is integrable on .

Theorem If a function is continuous on , then it is integrable on that interval.

Remark

R1 The value of the definite integral of a given function is a real number, depending on its lower and upper limits only, and is independent of the choice of the variable of integration, i.e.

 

.

R2 (by definition).

R3 (by definition)

Basic Properties of Definite Integrals

If are integrable functions on then

(a) for some constant k.

(b) .

(c) If (Even Function) then

(d) If (Odd Function), then

(e) Let , then .

 

Theorem (Comparison of two integrals)

If , then .

Theorem If and are the smallest and greatest values of a function on , and , then

.

 




Дата добавления: 2015-09-11; просмотров: 99 | Поможем написать вашу работу | Нарушение авторских прав

Negotiations Stages. The language | XI. The Negotiation Process | Markus Opens the Negotiations | I. Summary Writing | How to Write a Summary in 8 Easy Steps | II.1.E Give your objectives (purpose, aim, goals) | Size, layout, font (typeface) and size, colors. | Contents | Project life cycle | Stakeholder analysis |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав