Читайте также:
|
|
Поломки возможны в любом из образующих ДНК компонентов - и в азотистых основаниях, и в сахарофосфатном остове, причем как при копировании (репликации), так и при считывании (транскрипции) информации для последующего синтеза клеточных белков.
Часто случаются апуринизация того или иного нуклеотида и дезаминирование оснований. В первом случае рвутся гликозидные связи между пурином (аденином или гуанином) и дезоксирибозой, в результате чего эти основания выщепляются из цепи ДНК (место, в котором произошло такое событие, называют АП-сайтом). Второй случай - дезаминирование - приводит к образованию несвойственных для структуры ДНК соединений: вместо цитозина, аденина или гуанина появляются урацил, гипоксантин или ксантин, соответственно. Оба процесса спонтанные. За сутки в клетке человека апуринизация повторяется 5-10 тыс. раз, а частота дезаминирования составляет примерно 100 событий на полный геном.
Действие ультрафиолетового облучения приводит к насыщению двойных связей пиримидиновых оснований и образованию димеров из двух соседних пиримидинов в одной цепи ДНК. Ионизирующая радиация может вызвать несколько повреждений: разрыв пуринового кольца, фрагментацию основания, окисление апуринового сайта, а также одно- и двухцепочечные разрывы (это фактически разлом хромосом - главная причина летального действия ионизирующей радиации). Некоторые химические агенты способны сшивать цепи ДНК. Активные формы кислорода (ОН·, О2·–, Н2О2, перекиси липидов и др.), постоянно генерируемые в процессах метаболизма, повреждают и основания, и дезоксирибозу, что способствует образованию новых ковалентных связей. Особенно подвержены окислительному действию соседствующие гуанины (GG). Это буквально “горячие точки” такого процесса, а его конечный результат - модифицированное производное гуанозина. Сахарофосфатные связи разрушаются в тех случаях, когда обе нити ДНК лишились пуринов в противолежащих друг другу местах или вблизи произошла фрагментация дезоксирибозы. Тогда рвутся сразу обе цепи ДНК. Источником структурных дефектов может быть и естественный процесс - репликация, если в комплементарных цепях появляются неспаренные нуклеотиды.
![]() | ![]()
|
Клетка способна устранить перечисленные повреждения, несмотря на их различия, и восстановить структуру ДНК. Вполне понятно, что для этого требуются специальные механизмы. И хотя в частностях они отличаются один от другого и бывают весьма сложными, все же подчиняются общим принципам. Сначала опознается вид возникшей неисправности. Этим занимаются один белок или несколько (тогда они объединяются в месте изъяна в комплекс). Затем поврежденный участок вырезается в ходе ферментативных реакций, после чего ДНК-полимераза синтезирует правильный кусок ДНК. Завершается репарация сшиванием отдельных фрагментов цепи ДНК-лигазой. Такова общая схема, но каждый тип ремонта осуществляют собственные белки и ферменты, определяющие его индивидуальность. Не правда ли, эта схема напоминает обычное латание дыр на одежде?
Дата добавления: 2015-09-10; просмотров: 103 | Поможем написать вашу работу | Нарушение авторских прав |