Читайте также:
|
|
Штифтовые соединения служат для соединения осей и валов с установленными на них деталями при передаче небольших вращающихся моментов. Образуются совместным сверлением соединяемых деталей и установкой в отверстие с натягом специальных цилиндрических или конических штифтов (рис. 66). Соединения предназначены для точного взаимного фиксирования деталей, а также для передачи небольших нагрузок.
Рис.66 Штифтовые соединения
Рис.67 Конструкции штифтов
Известны цилиндрические (рис.67, а, б), конические (рис.67, в, г, д), цилиндрические пружинные разрезные (рис.67, е), просечённые цилиндрические, конические и др. (рис.67, ж, з, и, к), простые, забиваемые в отверстия (рис.67, б, в), выбиваемые из сквозных отверстий с другой стороны (гладкие, с насечками и канавками, пружинные, вальцованные из ленты, снабжённые резьбой для закрепления или извлечения (рис.67, д) и т.д. Применяются специальные срезаемые штифты, служащие предохранителями.
По назначению их разделяют на силовые и установочные. На рис. 68 показана установка цилиндрического штифта. В качестве силовых используют конические и фасонные штифты.
Рис. 68. Соединение цилиндрическим штифтом
При больших нагрузках ставят два или три штифта (под углом 90 или 120°). При передаче знакопеременной нагрузки эти штифты следует устанавливать так, чтобы исключить их выпадение. Материал штифтов — сталь Ст5, Стб, 40, 35Х и др. Гладкие штифты выполняют из стали 45 и А12, штифты с канавками и пружинные – из пружинной стали.
При закреплении колёс на валу штифты передают как вращающий момент, так и осевое усилие.
Достоинства штифтовых соединений:
- простота конструкции;
- простота монтажа-демонтажа;
- точное центрирование деталей благодаря посадке с натягом;
- работа в роли предохранителя, особенно при креплении колёс к валу.
Недостатком штифтовых соединений является ослабление соединяемых деталей отверстием.
Подобно заклёпкам штифты работают на срез и смятие. Соответствующие расчёты выполняют обычно как проверочные
Штифты с канавками рассчитывают также, как гладкие, но допускаемые напряжения материала занижают на 50%.
Профильные соединения относятся к бесшпоночным соединениям. Соединяемые детали скрепляются между собой посредством взаимного контакта по некруглой поверхности. Простейшим профильным соединением является соединение с валом или с осью, как показано на рис. 69, а. Более совершенными являются профильные соединения с овальным контуром поперечного сечения. По сравнению со шпоночными и шлицевыми соединениями профильные обеспечивают лучшее центрирование и более высокую прочность, но сложность изготовления профильного отверстия ограничивает их применение. Расчет па прочность профильных соединений сводится в основном к проверке их рабочих поверхностей на смятие.
Рис. 69. Профильные соединения
Раздел 6. Введение в передачи.
При проектировании к механическим передачам предъявляются следующие требования:
- высокие нагрузочные способности при ограниченных габаритных размерах, весе, стоимости;
- постоянство передаточного отношения или закона его изменения;
- обеспечение определенного взаимного расположения осей ведущего и ведомого валов, в частности, межосевого расстояния ;
- малые потери при передаче мощности (высокий кпд) и, как следствие, ограниченный нагрев и износ;
- плавная и бесшумная работа;
- прочность, долговечность, надёжность.
Передачи имеют широкое распространение в машиностроении по следующим причинам:
1) энергию целесообразно передавать при больших частотах вращения;
2) требуемые скорости движения рабочих органов машин, как правило, не совпадают с оптимальными скоростями двигателя; обычно ниже, а создание тихоходных двигателей вызывает увеличение габаритов и стоимости;
3) скорость исполнительного органа в процессе работы машины-орудия необходимо изменять (например, у автомобиля, грузоподъемного крана, токарного станка), а скорость машины-двигателя чаще постоянна (например, у электродвигателей);
4) нередко от одного двигателя необходимо приводить в движение несколько механизмов с различными скоростями;
5) в отдельные периоды работы исполнительному органу машины требуется передать вращающие моменты, превышающие моменты на валу машины-двигателя, а это возможно выполнить за счет уменьшения угловой скорости вала машины-орудия;
6) двигатели обычно выполняют для равномерного вращательного движения, а в машинах часто оказывается необходимым поступательное движение с определенным законом;
7) двигатели не всегда могут быть непосредственно соединены с исполнительными механизмами из-за габаритов машины, условий техники безопасности и удобства обслуживания.
Как правило, угловые скорости валов большинства используемых в настоящее время в технике двигателей (поршневых двигателей внутреннего сгорания, газотурбинных, электрических, гидравлических и пневматических двигателей) значительно превышают угловые скорости валов исполнительных или рабочих органов машин, порой на 2-3 порядка. Поэтому доставка (передача) энергии двигателя с помощью передачи любого типа, в том числе и механической, происходит, как правило, совместно с одновременным преобразованием моментов и угловых скоростей (в сторону повышения первых и понижения последних).
При этом необходимо отметить, что конструктивное обеспечение функции транспортного характера – чисто передачи энергии иной раз вступает в логическое противоречие с направлением задачи конечного преобразования силовых и скоростных параметров этой энергии. Например, в трансмиссиях многих транспортных машин (особенно высокой проходимости) входной редуктор сначала повышает частоту вращения, понижение ее до требуемых пределов производят бортовые или колесные редукторы.
Этот прием позволяет снизить габаритно-весовые показатели промежуточных элементов трансмиссии (коробок перемены передач, карданных валов) – размеры валов и шестерен пропорциональны величине передаваемого крутящего момента в степени 1/3.
Аналогичный принцип используется при передаче электроэнергии – повышение напряжения перед ЛЭП позволяет значительно снизить тепловые потери, определяемые в основном силой тока в проводах, а заодно уменьшить сечение этих проводов.
Иногда передача механической энергии двигателя сопровождается также преобразованием вида движения (например, поступательного движения во вращательное или наоборот) или законов движения (например, равномерного движения в неравномерное).
Широко известными образцами таких передач являются кривошипно-шатунный механизм и кулачковый привод механизма газораспределения.
Дата добавления: 2015-09-11; просмотров: 98 | Поможем написать вашу работу | Нарушение авторских прав |