Читайте также:
|
|
В практическом анализе оценка рассеяния значений признака может оказаться не менее важной, чем определение средней.
Самая грубая оценка рассеяния, легко определяемая по данным вариационного ряда, может быть дана с помощью размаха вариации – характеризует границы вариации изучаемого признака.
где xmax и xmin - наибольшее и наименьшее значения варьирующего признака.
Показывает, на сколько велико различие между единицами совокупности, имеющими самое маленькое и самое большое значение признака. Показатель основан на крайних значениях варьирующего признака и не отражает отклонений всех вариант в ряду.
Этот показатель представляет интерес в тех случаях, когда важно знать, какова амплитуда колебаний значений признака, например, каковы колебания цены на данный товар в течение недели или по разным регионам в данный отрезок времени.
Однако этот показатель не дает представления о характере вариационного ряда, расположении вариантов вокруг средней и может сильно меняться, если добавить или исключить крайние варианты (когда эти значения аномальны для данной совокупности). В этих случаях размах вариации дает искаженную амплитуду колебания против нормальных ее размеров. Поэтому следует очистить совокупность от аномальных наблюдений, прежде чем определять размах вариации.
Для оценки колеблемости значений признака относительно средней используются характеристики рассеяния. Они различаются выбранной формой средней и способами оценки отклонений от нее отдельных вариантов. К таким показателям относятся:
Среднее линейное отклонение есть средняя арифметическая из абсолютных значений отклонений отдельных вариантов от их средней величины:
![]() | для не сгруппированных данных |
![]() | для сгруппированных данных |
где xi - значение признака в дискретном ряду или середина интервала в интервальном распределении;
fi - частота признака.
Среднее линейное отклонение выражено в тех же единицах измерения, что и варианты или их средняя. Оно дает абсолютную меру вариации. Показывает, на какую величину отклоняется признак в изучаемой совокупности от средней величины признака.
Чтобы избежать равенства нулю суммы отклонений от средней, используют либо абсолютные значения отклонений, либо их четные степени, например квадраты. В последнем случае мера вариации называется дисперсией и обозначается D или s2:
Дисперсия представляет собой средний квадрат отклонений индивидуальных значений признака от их средних величин. В зависимости от исходных данных вычисляется по формулам:
![]() | для несгруппированных данных |
![]() | для сгруппированных данных |
Расчет дисперсии может быть упрощен.
или
Вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, измеряя их в квадратных единицах. Поэтому на основе дисперсии вводятся еще две характеристики: среднее квадратическое отклонение и коэффициент вариации.
Среднее квадратическое отклонение измеряется в тех же единицах, что и варьирующий признак, и исчисляется путем извлечения квадратного корня из дисперсии:
![]() | для несгруппированных данных |
![]() | для сгруппированных данных |
называется s Среднее квадратическое отклонение, как и среднее линейное отклонение, показывает, на сколько в среднем отклоняются конкретные варианты признака от его среднего значения. Величина о часто используется в качестве единицы измерения отклонений от средней арифметической. Отклонение, выраженное в нормированным или стандартизированным.
Дата добавления: 2014-12-23; просмотров: 48 | Поможем написать вашу работу | Нарушение авторских прав |
|