Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Вариационный ряд

Читайте также:
  1. VII.Дискретный вариационный ряд распределения.
  2. VIII.Интервальный вариационный ряд распределения.
  3. Вариационный анализ по объему добываемой меди.
  4. Вариационный ряд
  5. Дискретный вариационный ряд
  6. Дискретный вариационный ряд
  7. Дискретный вариационный ряд и его числовые характеристики
  8. Интервальный вариационный ряд
  9. Интервальный вариационный ряд

Наблюдаемые значения случайной величины х 1, х 2, …, хk называются вариантами.

Частотой варианты х i называется число ni (i =1,…, k), показывающее, сколько раз эта варианта встречается в выборке.

Частостью (относительной частотой, долей) варианты хi (i =1,…, k) называется отношение ее частоты ni к объему выборки n.

Частоты и частости называют весами.

Накопленной частотой называется количество вариант, значения которых меньше данного х:

Накопленной частостью называется отношение накопленной частоты к объему выборки:

Вариационным рядом (статистическим рядом) – называется последовательность вариант, записанных в порядке возрастания и соответствующих им весов.

Вариационный ряд может быть дискретным (выборка значений дискретной случайной величины) и непрерывным (интервальным) (выборка значений непрерывной случайной величины).

Дискретный вариационный ряд имеет вид:

Когда число вариант велико или признак является непрерывным (случайная величина может принимать любые значения в некотором интервале), составляют интервальный вариационный ряд.

Для построения интервального вариационного ряда проводят группировку вариант – их разбивают на отдельные интервалы:

Число интервалов иногда определяют с помощью формулы Стерджеса:

Затем подсчитывается число вариант, попавших в каждый интервал – частоты ni (или частости ni / n). Если варианта находится на границе интервала, то ее присоединяют к правому интервалу.

Интервальный вариационный ряд имеет вид:

Варианты
Частоты

Эмпирической (статистической) функцией распределения называется функция, значение которой в точке х равно относительной частоте того, что варианта примет значение, меньшее х (накопительной частости для х):

Полигоном частот называют ломанную, отрезки которой соединяют точки с координатами (х 1; n 1), (х 2; n 2), …, (хk; nk). Аналогично строится полигон частостей, который является статистическим аналогом многоугольника распределений.

Для непрерывного вариационного ряда полигон можно построить, если в качестве значений х 1, х 2, …, хk взять середины интервалов.

Интервальный вариационный ряд графически обычно изображают с помощью гистограммы.

Гистограмма – ступенчатая фигура, состоящая из прямоугольников, основаниями которых являются частичные интервалы длины h = xi +1xi, i = 0,…, k -1, а высоты равны частотам (или частостям) интервалов ni (wi).

Кумулята (кумулятивная кривая) – кривая накопленных частот (частостей). Для дискретного ряда кумулята представляет ломанную, соединяющую точки или , . Для интервального ряда кумулята начинается с точки, абсцисса которой равна началу первого интервала, а ордината – накопленной частоте (частости), равной нулю. Другие точки этой ломанной соответствуют концам интервалов.




Дата добавления: 2015-01-05; просмотров: 112 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав