Читайте также:
|
|
Числовые характеристики статистического распределения: выборочное среднее, оценки дисперсии, оценки моды и медианы, оценки начальных и центральных моментов. Статистическое описание и вычисление оценок параметров двумерного случайного вектора.
Одна из задач математической статистики: по имеющейся выборке оценить значения числовых характеристик исследуемой случайной величины.
К характеристикам распределения, описывающим количественно его структуру и строение, относятся:
• характеристики положения;
• рассеивания;
• асимметрии и эксцесса.
Оценка центральной тенденции
К характеристикам положения относятся следующие оценки центральной тенденции: мода
(Мо), медиана (Ме), квантили и среднее арифметическое (M).
Важное значение имеет такая величина признака, которая встречается чаще всего в
изучаемом ряду, в совокупности. Такая величина называется модой (Мо). В дискретном ряду Мо определяется без вычисления, как значение признака с наибольшей частотой (например, по данным таблицы 2.1. Мо= 13).
При расчете моды может возникнуть несколько ситуаций:
1. Два значения признака, стоящие рядом, встречаются одинаково часто. В этом случае мода равна среднему арифметическому этих двух значений. Например, в следующем ряду данных:
12, 13, 14, 14, 14, 16, 16, 16, 18, 19
Мо= (14+16)/2= 15.
2. Два значения, встречаются также одинаково часто, но не стоят рядом. В этом случае говорят, что ряд данных имеет две моды, т.е. он бимодальный.
3. Если все значения данных встречаются одинаково часто, то говорят, что ряд не имеет
моды.
Чаще всего встречаются ряды данных с одним модальным значением признака. Если в
ряду данных встречается два или более равных значений признака, то говорят о неоднородности совокупности.
Вторая числовая характеристика ряда данных называется медианой (Ме) – это такое значение признака, которое делит ряд пополам. Иначе, медиана обладает тем свойством, что половина всех выборочных значений признака меньше её, половина больше. При нечетном числе элементов в ряду данных, медиана равна центральному члену ряда, а при четном среднему арифметическому двух центральных значений ряда. В нашем примере (таблица 2.1.) Ме=(13+13)/2=13. Вычисление медианы имеет смысл только для порядкового признака.
Среднее арифметическое значение признака:
где xi – значения признака, n – количество данных в рассматриваемом ряду.
Среднее арифметическое значение признака, вычисленное для какой-либо группы,
интерпретируется как значение наиболее типичного для этой группы человека. Однако бывают случаи, когда подобная интерпретация несостоятельна (в случае, если существует большая разница между минимальным и максимальным значениями признака).
Квантиль – это такое значение признака, которое делит распределение в заданной пропорции: слева 0,5%, справа 99,5%; слева 2,5%, справа 97,5% и т.п. Обычно выделяют
следующие разновидности квантилей:
1) Квартили Q1, Q 2, Q3 – они делят распределение на четыре части по 25% в каждой;
2) Квинтили К1, К2, К3, К4 – они делят распределение на пять частей по 20% в каждой;
3) Децили D1,...,D9, их девять, и они делят распределение на десять частей по 10% в каждой;
каждой части.
Поскольку процентиль – наиболее мелкое деление, то все другие квантили могут быть представлены через процентили. Так, первый квартиль – это двадцать пятый процентиль, первый квинтиль – второй дециль или двадцатый процентиль, и т.п
Для характеристики рядов распределения (структуры вариационных рядов), наряду со средней, используются т. н. структурные средние: мода и медиана. Мода и медиана наиболее часто используются в экономической практике.
Мода - варианта, которая наиболее часто встречается в ряду распределения (в данной совокупности).
В дискретных вариационных рядах мода определяется по наибольшей частоте. Предположим товар А реализуют в городе 9 фирм по следующим ценам в рублях:
44; 43; 44; 45; 43; 46; 42; 46;43. Так как чаще всего встречается цена 43 рубля, то она и будет модальной.
При характеристике социальных групп населения по уровню дохода следует использовать модальное значение, нежели среднее. Средняя будет занижать одни показатели и завышать другие — тем самым осредняя (уравнивания) доходы всех слоев населения.
Мода применяется для решения некоторых практических задач. Так, например, при изучении товарооборота рынка берется модальная цена, для изучения спроса на обувь, одежду используют модальные размеры обуви и одежды.
Медиана - это численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда (построенного в порядке возрастания, либо убывания значений изучаемого признака). Медиану иногда называют серединной вариантой, т.к. она делит совокупность на две равные части таким образом, чтобы по обе ее стороны находилось одинаковое число единиц совокупности. Если всем единицам ряда присвоить порядковые номера, то порядковый номер медианы будет определяться по формуле (n+1):2 для рядов, где n — нечетное. Если же ряд с четным числом единиц, то медианой будет являться среднее значение между двумя соседними вариантами, определенными по формуле: n:2, (n+1):2, (n:2)+1.
В дискретных вариационных рядах с нечетным числом единиц совокупности — это конкретное численное значение в середине ряда.
6. Генеральная средняя.
Пусть изучается генеральная совокупность относительно количественного признака Х.
Генеральной средней называют среднее арифметическое значений признака генеральной совокупности.
Если все значения признака различны, то
Если значения признака имеют частоты N1, N2, …, Nk, где N1 +N2+…+Nk= N, то
Выборочная средняя.
Пусть для изучения генеральной совокупности относительно количественного признака Х извлечена выборка объема n.
Выборочной средней называют среднее арифметическое значение признака выборочной совокупности.
Если все значения признака выборки различны, то
если же все значения имеют частоты n1, n2,…,nk, то
Выборочная средняя является несмещенной и состоятельной оценкой генеральной средней.
Замечание: Если выборка представлена интервальным вариационным рядом, то за xi принимают середины частичных интервалов.
Дата добавления: 2015-01-12; просмотров: 148 | Поможем написать вашу работу | Нарушение авторских прав |