Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Постройте таблицу истинности.

Читайте также:
  1. Введите следующие данные в компьютерную таблицу XL.
  2. Задача 1. Заполните следующую таблицу.
  3. Задача 2. Заполните таблицу сравнительного анализа административно-правового статуса федеральных министерств, федеральных служб и федеральных агентств.
  4. Задача 2. Заполните таблицу сравнительного анализа видов ответственности государственных служащих.
  5. Задача 3. Заполните таблицу сравнительного анализа общественных объединений.
  6. Запишите в таблицу выбранные цифры, а затем получившуюся последовательность цифр перенесите в бланк ответов (без пробелов и каких-либо символов).
  7. Заполните обобщенную таблицу распределенности терминов в суждении.
  8. Заполните пробел в строке и таблицу
  9. Заполните таблицу
  10. Заполните таблицу.

((А→В)∧В)→А.

Решение:

1. Определяем количество столбцов и колонок в таблице истинности. Количество колонок в таблице истинности определяется количеством операций и количеством переменных. Количество строк в таблице истинности определяется как 2n степени, где n – количество данных переменных.

2. Определяем порядок выполнения операций. Ясно, что сначала мы можем вычислить значениях в столбцах (А→В) [1] и В [2]. После конъюнкции (А→В) ∧В) [3] вычисляем А [4]. Затем вычисляем значения главного знака формулы – импликации → [5] между (А→В) ∧В) [3] и А [4].

3. Для выполнения каждой из представленных операций смотрим в опорную таблицу истинности (табл. 2). Действия необходимо осуществлять в соответствии с символической формой.

4. Составляем таблицу истинности (табл. 3), распределяя порядок необходимых операций.

Таблица 3

Порядок операций          
A B (А→В) ˄ В А
И И И Л Л И Л
И Л Л Л И И Л
Л И И Л Л И И
Л Л И И И И И

 

5. Поскольку в итоге [5] имеем одни истины, то данное выражение является законом логики.

12. Правильно ли построено рассуждение? Выразите в символической форме и постройте таблицу истинности.

Если Иванов был в Омске, то он не мог быть в это время в Москве, а значит, совершить это преступление. А он не был в Омске в это время. Значит, он мог совершить преступление.

Решение:

1. Выделяем пропозициональные переменные и обозначаем их буквами.

2. Фиксируем логические операторы, связывающие переменные друг с другом.

3. Запишем это рассуждение на символическом языке:

((А→В) ∧ (В→С)∧А)→С.

4. Для того, чтобы проверить, является ли данная формула логическим законом, необходимо построить таблицу истинности. Если данная формула является логическим законом, значит, рассуждение правильное.

13. Постройте непосредственные умозаключения – обращение, превращение, противопоставление предикату.

Все инженеры имеют высшее образование.

Решение:

1. Определяем качество, количество, субъект и предикат суждения.

2. Последовательно осуществляем необходимые операции.

Превращение (вводим двойное отрицание: перед связкой и перед предикатом): Ни один инженер не является человеком без высшего образования.

Обращение (определяем вид обращения и меняем в заключении субъект и предикат местами): Некоторые имеющие высшее образование – инженеры.

Противопоставление предикату (последовательно превращаем, а затем обращаем исходное суждение): Ни один человек без высшего образования не является инженером.




Дата добавления: 2014-12-20; просмотров: 96 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав