Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Читайте также:
  1. VI. УРАВНЕНИЯ МАКСВЕЛЛА
  2. Административные правонарушения против общественного порядка: понятие, виды
  3. Административные правонарушения против порядка приписки граждан к призывным участкам, призыва на военную службу и воинского учета: понятие, виды
  4. Аналитические выражения второго закона термодинамики.
  5. Б) Найти частное решение линейного дифференциального уравнения
  6. Б) ослабление второго тона над легочной артерией
  7. Билет №1. Постановка задачи силового расчета. Силы, действующие в механизме. Уравнения движения системы. Кинематические пары, накладывающие идеальные связи.
  8. Билет №2 Уравнения кинетостатики
  9. Билет. Конец XVIII первая четверть XIX веков: крушение "старого порядка" в Европе и попытка преобразования России.
  10. Будный сформулировал основные факторы, обуславливающие необходимость власти. К ним он относит установление порядка в государстве, охрану интересов личности и государства.

Рассмотрим линейное дифференциальное уравнение вида

где p, q − постоянные коэффициенты.

 

Для каждого такого дифференциального уравнения можно записать так называемое характеристическое уравнение:

Обшее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которое в данном случае будет являться квадратным уравнением. Возможны следующие случаи:

1)Дискриминант характеристического квадратного уравнения положителен: D > 0. Тогда корни характеристического уравнения k1 и k2 действительны и различны. В этом случае общее решение описывается функцией

где C1 и C2 − произвольные действительные числа.

 

2)Дискриминант характеристического квадратного уравнения равен нулю: D = 0. Тогда корни действительны и равны. В этом случае говорят, что существует один корень k1 второго порядка. Общее решение однородного дифференциального уравнения имеет вид:

3)Дискриминант характеристического квадратного уравнения отрицателен: D < 0. Такое уравнение имеет комплексно-сопряженные корни k1 = α + βi, k1 = α − βi. Общее решение записывается в виде

 




Дата добавления: 2015-01-30; просмотров: 100 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.023 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав