Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Упругие волны и 11. Фазовая скорость

Читайте также:
  1. II. Скорость света в вакууме одинакова для всех инерциальных систем отсчета. Она не зависит ни от скорости источника, ни от скорости приемника светового сигнала.
  2. Бегущие волны
  3. Взаимодействуют с хроматином и изменяют скорость транскрипции
  4. Вибрация представляет собой процесс распространения механических колебаний в твердом теле. Вибрации характеризуются частотой и амплитудой смещения, скоростью и ускорением.
  5. Влияние катализатора на равновесие, энергию активации и скорость химической реакции.
  6. Влияние каталитической обстановки на скорость химической реакции.
  7. ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ
  8. Влияние температуры на скорость реакции. Уравнение Аррениуса. Энергия активации.
  9. Влияние температуры на скорость химической реакции. Правило Вант-Гоффа
  10. Внутреннее строение Земли. Границы внутренних оболочек и способы их изучения (P и S волны и их характеристики).

Бегущими волнами называются волны, ко­торые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности по­тока энергии. Этот вектор для упругих волн называется вектором Умова (по име­ни русского ученого Н. А. Умова (1846— 1915), решившего задачу о движении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, пере­носимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распро­странения волны.

Для вывода уравнения бегущей во­лны — зависимости смещения колеблю­щейся частицы от координат и времени — рассмотрим плоскую волну, предполагая, что колебания носят гармонический ха­рактер, а ось х совпадает с направлением распространения волны (рис. 220). В дан­ном случае волновые поверхности перпен­дикулярны оси х, а так как все точки волновой поверхности колеблются одина­ково, то смещение x будет зависеть только от х и t, т. е. x=x (х, t).

На рис. 220 рассмотрим некоторую частицу среды В, находящуюся от источ­ника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости х= 0, описываются функцией x(0, t)=А coswt, то частица среды В колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источ­ника на т, так как для прохождения во­лной расстояния х требуется время t= x/v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид

x(x,t)=Acosw(t-x/v), (154.1)

откуда следует, что x (х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегу­щей волны. Если плоская волна распро­страняется в противоположном направле-нии, то

x(х, t)=A cosw(t+x/v).

В общем случае уравнение плоской волны, распространяющейся вдоль поло­жительного направления оси х в среде, не поглощающей энергию, имеет вид

x(x,t)=Acos[w(t -х/v)+j0], (154.2)

где А= const — амплитуда волны, w — циклическая частота волны, j0 — началь­ная фаза колебаний, определяемая в об­щем случае выбором начал отсчета х и t, [w (t-x /v)+j0]— фаза плоской волны.

Для характеристики волн использует­ся волновое число

k=2p/l=2p/vT=w/v. (154.3) Учитывая (154.3), уравнению (154.2) можно придать вид

x(x,t)=A cos(wt-kх+j0). (154.4)

Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (154.4) только знаком чле­на kx.

Основываясь на формуле Эйлера (140.7), уравнение плоской волны можно записать в виде

x(x,t)=Aei(wt-kx+j0),

где физический смысл имеет лишь дей­ствительная часть (см. § 140).

Предположим, что при волновом про­цессе фаза постоянна, т. е.

w(t-x/v)+j0=const. (154.5) Продифференцировав выражение (154.5) и сократив на w, получим

dt -(1/v) dx=0, откуда

dx/dt=v. (154.6)

Следовательно, скорость v распростране­ния волны в уравнении (154.6) есть не что иное, как скорость перемещения фазы во­лны, и ее называют фазовой скоростью.

Повторяя ход рассуждений для плоской волны, можно доказать, что урав­нение сферической волны — волны, волновые поверхности которой имеют вид кон­центрических сфер, записывается как

x(r,t)=A0/rcos(wt-kr+j0), (154.7)

где r — расстояние от центра волны до рассматриваемой точки среды. В случае сферической волны даже в среде, не по­глощающей энергию, амплитуда колеба­ний не остается постоянной, а убывает с расстоянием по закону 1 /r. Уравнение (154.7) справедливо лишь для r, значи­тельно превышающих размеры источника (тогда источник колебаний можно считать точечным).

Из выражения (154.3) вытекает, что фазовая скорость

v=w/k. (154.8)

Если фазовая скорость волн в среде за­висит от их частоты, то это явление на­зывают дисперсией волн, а среда, в кото­рой наблюдается дисперсия волн, называ­ется диспергирующей средой.

Распространение волн в однородной изотропной среде в общем случае описы­вается волновым уравнением — диффе­ренциальным уравнением в частных про­изводных

где v — фазовая скорость, D= д 2/ д x2 + д 2/ д y2 + д 2/ д z2 — оператор Лапласа. Решением уравнения (154.9) является урав­нение любой волны. Соответствующей под­становкой можно убедиться, что уравне­нию (154.9) удовлетворяют, в частности, плоская волна (см. (154.2)) и сфериче­ская волна (см. (154.7)). Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид




Дата добавления: 2015-02-16; просмотров: 76 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав