Читайте также:
|
|
Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Этот вектор для упругих волн называется вектором Умова (по имени русского ученого Н. А. Умова (1846— 1915), решившего задачу о движении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распространения волны.
Для вывода уравнения бегущей волны — зависимости смещения колеблющейся частицы от координат и времени — рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось х совпадает с направлением распространения волны (рис. 220). В данном случае волновые поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково, то смещение x будет зависеть только от х и t, т. е. x=x (х, t).
На рис. 220 рассмотрим некоторую частицу среды В, находящуюся от источника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости х= 0, описываются функцией x(0, t)=А coswt, то частица среды В колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на т, так как для прохождения волной расстояния х требуется время t= x/v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид
x(x,t)=Acosw(t-x/v), (154.1)
откуда следует, что x (х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегущей волны. Если плоская волна распространяется в противоположном направле-нии, то
x(х, t)=A cosw(t+x/v).
В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид
x(x,t)=Acos[w(t -х/v)+j0], (154.2)
где А= const — амплитуда волны, w — циклическая частота волны, j0 — начальная фаза колебаний, определяемая в общем случае выбором начал отсчета х и t, [w (t-x /v)+j0]— фаза плоской волны.
Для характеристики волн используется волновое число
k=2p/l=2p/vT=w/v. (154.3) Учитывая (154.3), уравнению (154.2) можно придать вид
x(x,t)=A cos(wt-kх+j0). (154.4)
Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (154.4) только знаком члена kx.
Основываясь на формуле Эйлера (140.7), уравнение плоской волны можно записать в виде
x(x,t)=Aei(wt-kx+j0),
где физический смысл имеет лишь действительная часть (см. § 140).
Предположим, что при волновом процессе фаза постоянна, т. е.
w(t-x/v)+j0=const. (154.5) Продифференцировав выражение (154.5) и сократив на w, получим
dt -(1/v) dx=0, откуда
dx/dt=v. (154.6)
Следовательно, скорость v распространения волны в уравнении (154.6) есть не что иное, как скорость перемещения фазы волны, и ее называют фазовой скоростью.
Повторяя ход рассуждений для плоской волны, можно доказать, что уравнение сферической волны — волны, волновые поверхности которой имеют вид концентрических сфер, записывается как
x(r,t)=A0/rcos(wt-kr+j0), (154.7)
где r — расстояние от центра волны до рассматриваемой точки среды. В случае сферической волны даже в среде, не поглощающей энергию, амплитуда колебаний не остается постоянной, а убывает с расстоянием по закону 1 /r. Уравнение (154.7) справедливо лишь для r, значительно превышающих размеры источника (тогда источник колебаний можно считать точечным).
Из выражения (154.3) вытекает, что фазовая скорость
v=w/k. (154.8)
Если фазовая скорость волн в среде зависит от их частоты, то это явление называют дисперсией волн, а среда, в которой наблюдается дисперсия волн, называется диспергирующей средой.
Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением — дифференциальным уравнением в частных производных
где v — фазовая скорость, D= д 2/ д x2 + д 2/ д y2 + д 2/ д z2 — оператор Лапласа. Решением уравнения (154.9) является уравнение любой волны. Соответствующей подстановкой можно убедиться, что уравнению (154.9) удовлетворяют, в частности, плоская волна (см. (154.2)) и сферическая волна (см. (154.7)). Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид
Дата добавления: 2015-02-16; просмотров: 76 | Поможем написать вашу работу | Нарушение авторских прав |