Читайте также:
|
|
Самоорганизующими называются системы, которые при изменении внешних или внутренних условий находят пути для своего сохранения или развития и эволюции. Примерами самоорганизационных систем могут служить живая клетка, популяция, человеческий коллектив, робот, машина, биосфера и т.д.
Самоорганизующие системы имеют следующие свойства:
· Они сохраняют состояние термодинамического равновесия.
· Их упорядоченность обеспечивается использованием информации.
· Системы реагируют на внешние условия.
· Они обладают функциональной активностью, которая выражается в противодействии несоответствующими внешним условиям.
· Самоорганизационные системы обладают выбором поведения - им нельзя навязать путь развития, поведение их непредсказуемо случайно и зависит от предыстории.
· Порядок в системе поддерживается за счет потока энергии вещества и информации извне.
· Они действуют целенаправленно и ведут себя как единое целое.
· Самоорганизация выступает как источник эволюции систем, т.к. она служит началом процесса возникновения новых более качественных и более сложных структур.
Вопрос 31. Условия протекания самоорганизующих процессов.
Для того чтобы в системе шла самоорганизация, должны выполняться следующие условия: Они должны быть открытыми, нелинейными и диссипативными.
Открытыми называются системы, которые постоянно обмениваются с окружающей средой энергией, веществом или информацией. Открытые системы всегда подвержены колебаниям т.к. изменения в окружающей среде могут вывести систему из состояния равновесия, которое и приводит систему в состояние хаоса. Хаос начинается если параметры системы достигают определенного критического значения. Далее хаос может быть началом формирования новых структур, но весь этот процесс носит случайный и неопределенный характер. Открытый характер большинства природных систем указывает на то, что в мире доминирует не равновесие и стабильность, а неустойчивость и неравновесность. Они и создают условия многовариантности путей выбора развития системы.
В связи с этим процессы в самоорганизующих системах носит нелинейный характер, нелинейные системы описываются уравнениями, которые имеют 2 и более качественно различных решения. Это означает, что множеству решений нелинейного уравнения соответствует множество путей развития системы. Развитие осуществляется через случайный выбор, который происходит, в точке бифуркации.
Точка бифуркации - критическое состояние системы, при котором система становится неустойчивой относительно флуктуаций и возникает неопределенность: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и высокий уровень упорядоченности. Флуктуация (от лат. - колебание) - термин, характеризующий любое колебание или любое периодическое изменение.
Процесс происходит в нелинейных системах, и носит пороговый характер, т.е. при плавном изменении внешние условия поведения системы изменяются скачком, после которого система в прежнее состояние вернутся не может.
Нелинейные системы, являясь открытыми и неравновесными, сами создают и поддерживают неоднородность среды, при этом между системой и средой могут возникать отношения обратной положительной связи. Система влияет на среду, в среде появляются другие условия, которые в свою очередь вызывают изменения в системе, при этом системы начинают самоорганизацию. Таким образом, самоорганизационные системы путем многократного контроля настраиваются на внешние факторы, достигают равновесия с условиями среды существования и тем самым сохраняют себя.
Открытые неравновесные системы в процессе взаимодействия с внешней средой могут приобретать особое динамическое состояние, которое называют диссипацией. Диссипация - это рассеивание энергии, т.е. переход энергии упорядочного движения в энергию хаотического движения. Рассеивая энергию системы, производят энтропию. Для того чтобы её снизить, необходим дополнительный приток энергии из внешней среды, но в таком состоянии система поглощает только часть энергии, определенного качества. Если в данном случае при этом в системе возникает несколько структур, то реализуется, та при которой наблюдается минимальный рост энтропии и которая способна в максимальной форме поглощать энергию.
История развития природы - это история образования все более и более сложных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях её организации во Вселенной – от элементарных частиц до образования Галактики. В биологии – от низших и простейших к высшим и сложным вплоть до человека и общества.
Дата добавления: 2015-02-16; просмотров: 133 | Поможем написать вашу работу | Нарушение авторских прав |