Читайте также:
|
|
(14).
Т.о. наличие возможности переходов между двумя эквивалентными состояниями приводит к возникновению в системе двух энергетических уровней вместо одного (рис. 20_3). Система может находиться лишь в одном из построенных стационарных состояний (), но в каждом из них вероятность найти классически осмысленную конфигурацию или одинакова и равна 0.5. Симметричное стационарное состояние энергетически более выгодно и наиболее часто реализуется в природе.
Аммиачный мазер. Существует множество разнообразных систем, обладающих двумя базисными состояниями, не сохраняющимися во времени. К ним относится молекула аммиака, с классической точки зрения имеющая две конфигурации или, способные превращаться друг в друга из-за туннельного эффекта (рис. 20_4). Стационарные энергетические уровня молекулы разделены зазором, энергетически соответствующем высокочастотному радиоизлучению. Настроенное в резонанс внешнее электромагнитное поле способно вызывать переходы между этими состояниями, которых сопровождаются поглощением или излучением энергии в виде электромагнитных волн (на другом языке - фотонов). Ансамбль из молекул, находящихся в верхнем энергетическом состоянии способен только излучать энергию, т.е. взаимодействовать с электромагнитным полем, усиливая его. На описанном принципе основана работа первого мазера - лазера, работающего в радио диапазоне излучения.
Природа химической связи. Системой с двумя состояниями является простейшее химическое соединение - молекулярный ион водорода (рис. 20_5). Как и в рассмотренных выше случаях причиной не сохранения во времени выбранных базисных состояний является туннельный эффект. При сближении ядер вероятность туннельного перехода электрона от одного к другому возрастает, что приводит к увеличению расстояния между подуровнями и делает симметричное состояние иона энергетически более выгодным. "Стремясь к снижению полной энергии", ядра сближаются, что воспринимается как результат действия дополнительной силы, обеспечивающей возникновение химической связи.
Природа электростатических и ядерных взаимодействий. В общих чертах сходный механизм лежит в основе современных представлений о возникновении электростатических взаимодействий между электрическими зарядами. Вместо "туннелирующего" электрона в молекулярном ионе роль переносчика электрических взаимодействий между зарядами играют виртуальные фотоны, обнаружения которых в реальном эксперименте оказывается принципиально невозможным.
Сходный механизм был предложен и в случае сильных ядерных взаимодействий. Быстрый спад ядерных сил при увеличении расстояний привел к допущению, что переносчиком взаимодействия является на обладающий нулевой массой покоя фотон, а весьма тяжелая частица с массой, превосходящей электронную примерно в 200 раз. Вскоре такие частицы были обнаружены в космических лучах (пи-мезоны), но дальнейшие эксперименты показали их непричастность к ядерным силам. Однако выдвинутая гипотеза все же оказалась жизнеспособной: впоследствии были обнаружены похожие на ранее открытые мезоны частицы, свойства которых согласовывались с предсказанными на основе анализа ядерных сил.
Электропроводность кристаллов. Системы с двумя состояниями обладают двумя энергетическими подуровнями. Увеличение числа эквивалентных состояний приводит к появлению большего числа подуровней. Примером системы с большим числом состояний может служить электрон в идеальном кристалле, который может быть локализован вблизи каждого из N регулярно расположенных ионов, что соответствует набору базисных состояний: (рис. 20_6). Самой низкой энергии соответствует симметричная линейная комбинация базисных состояний:
(15),
Другие ортогональные линейные комбинации дают систему из близкорасположенных друг к другу N энергетических подуровней. При увеличении числа атомов в кристалле подуровни сливаются в сплошную полосу - энергетическую зону, соответствующую непрерывному набору разрешенных значений энергии электрона. Поскольку свободная частица в пустом пространстве так же может обладать энергией из непрерывного набора, поведение электрона в идеальном бесконечном кристалле весьма сходно с поведением свободной частицы. Этим объясняется возможность существования электропроводности в твердых кристаллических телах.
Уравнение Шредингера. При описании движения микрочастиц в пространстве в качестве базисного удобно выбрать непрерывный набор состояний с определенными координатами, для каждого из которых может быть записано уравнение, аналогичное (10). Конкретный вид оператора Гамильтона для этого случая был правильно угадан Шредингером и имеет вид, аналогичный классическому выражению для механической энергии:
(16),
где - оператор импульса, - оператор потенциальной энергии. Наибольший практический интерес представляют вероятности обнаружить находящуюся в стационарном состоянии частицу в заданной точке пространства R. В соответствии с общими правилами квантовой механики эта вероятность дается квадратом модуля соответствующей амплитуды, называемой волновой функцией:
(17).
Дата добавления: 2015-04-26; просмотров: 87 | Поможем написать вашу работу | Нарушение авторских прав |
<== предыдущая лекция | | | следующая лекция ==> |
Квантовая Механика | | | Квантовая физика |