Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

История

Читайте также:
  1. I.) История возникновения и развития компьютерных вирусов.
  2. II. История духа (Geistesgeschichte), образующая канон
  3. II. История церквей христиан веры евангельской в Беларуси
  4. III. История жизни (Аnamnesis vitae)
  5. IV. Интеллектуальная история
  6. V 1: История педиатрии
  7. X. Одичание и история
  8. Аблеев С.Р. История мировой философии./ Аблеев С.Р. 2005 – 418 стр.
  9. Ак Орда, Могулистан - государства XIV-XVвв. на территории Казахстана (территория, политическая история, общественный строй, хозяйство).
  10. Аксиоматический метод построения научной теории. Начала Евклида как образец аксиоматического построения научной теории. История создания неевклидовой геометрии

Задачи линейного программирования были первыми подробно изученными задачами поиска экстремума функций при наличии ограничений типа неравенств. В 1820 году Фурье и затем в 1947 году Данциг предложил метод направленного перебора смежных вершин в направлении возрастания целевой функции — симплекс-метод, ставший основным при решении задач линейного программирования.

Присутствие в названии дисциплины термина «программирование» объясняется тем, что первые исследования и первые приложения линейных оптимизационных задач были в сфере экономики, так как в английском языке слово «programming» означает планирование, составление планов или программ. Вполне естественно, что терминология отражает тесную связь, существующую между математической постановкой задачи и её экономической интерпретацией (изучение оптимальной экономической программы). Термин «линейное программирование» был предложен Данцигом в 1949 году для изучения теоретических и алгоритмических задач, связанных с оптимизацией линейных функций при линейных ограничениях.

Поэтому наименование «математическое программирование» связано с тем, что целью решения задач является выбор оптимальной программы действий.

Выделение класса экстремальных задач, определяемых линейным функционалом на множестве, задаваемом линейными ограничениями, следует отнести к 1930-м годам. Одними из первых, исследовавшими в общей форме задачи линейного программирования, были: Джон фон Нейман — математик и физик, доказавший основную теорему о матричных играх и изучивший экономическую модель, носящую его имя, и Канторович — советский академик, лауреат Нобелевской премии (1975), сформулировавший ряд задач линейного программирования и предложивший в 1939 году метод их решения (метод разрешающих множителей), незначительно отличающийся от симплекс-метода.

В 1931 году венгерский математик Б. Эгервари рассмотрел математическую постановку и решил задачу линейного программирования, имеющую название «проблема выбора», метод решения получил название «венгерского метода».

Канторовичем совместно с М. К. Гавуриным в 1949 году разработан метод потенциалов, который применяется при решении транспортных задач. В последующих работах Канторовича, Немчинова, В. В. Новожилова, А. Л. Лурье, А. Брудно, Аганбегяна, Д. Б. Юдина, Е. Г. Гольштейна и других математиков и экономистов получили дальнейшее развитие как математическая теория линейного и нелинейного программирования, так и приложение её методов к исследованию различных экономических проблем.

Методам линейного программирования посвящено много работ зарубежных учёных. В 1941 году Ф. Л. Хитчкок поставил транспортную задачу. Основной метод решения задач линейного программирования — симплекс-метод — был опубликован в 1949 году Данцигом. Дальнейшее развитие методы линейного и нелинейного программирования получили в работах Куна (англ.), А. Таккера (англ.), Гасса (Saul. I. Gass), Чарнеса (Charnes A.), Била (Beale E. M.) и др.

Одновременно с развитием линейного программирования большое внимание уделялось задачам нелинейного программирования, в которых либо целевая функция, либо ограничения, либо то и другое нелинейны. В 1951 году была опубликована работа Куна и Таккера, в которой приведены необходимые и достаточные условия оптимальности для решения задач нелинейного программирования. Эта работа послужила основой для последующих исследований в этой области.

Начиная с 1955 году опубликовано много работ, посвященных квадратическому программированию (работы Била, Баранкина и Дорфмана (Dorfman R.), Франка (Frank M.) и Вольфа (Wolfe P.), Марковица и др.). В работах Денниса (Dennis J. B.), Розена (Rosen J. B.) и Зонтендейка (Zontendijk G.) разработаны градиентные методы решения задач нелинейного программирования.

В настоящее время для эффективного применения методов математического программирования и решения задач на компьютерах разработаны алгебраические языки моделирования, представителями которыми являются AMPL и LINGO.

 

 




Дата добавления: 2015-05-05; просмотров: 71 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Классификация методов оптимизации| дефлятор ВВП 2,20

lektsii.net - Лекции.Нет - 2014-2025 год. (0.247 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав