Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Классификация методов оптимизации

Читайте также:
  1. A1. Сущность и классификация организаций. Жизненный цикл организации и специфика управления на различных его этапах.
  2. C.) К специфическим задачам, которые используются в ходе реализации частично-поисковых методов на уроке технологии, относятся
  3. D)практических методов.
  4. I. ВНЕДРЕНИЕ ПЕРЕДОВЫХ ПРИЕМОВ И МЕТОДОВ ТРУДА
  5. I. Классификация по контингенту учащихся.
  6. I.КЛАССИФИКАЦИЯ ГРУЗОВ
  7. II) Классификация рисков в АУ
  8. II. Классификация инвестиций
  9. II. Классификация методов исследования ППО
  10. II. Классификация ритмов

Общая запись задач оптимизации задаёт большое разнообразие их классов. От класса задачи зависит подбор метода (эффективность её решения). Классификацию задач определяют: целевая функция и допустимая область (задаётся системой неравенств и равенств или более сложным алгоритмом)

 

 

Методы оптимизации классифицируют в соответствии с задачами оптимизации:

· Локальные методы: сходятся к какому-нибудь локальному экстремуму целевой функции. В случае унимодальной целевой функции, этот экстремум единственен, и будет глобальным максимумом/минимумом.

· Глобальные методы: имеют дело с многоэкстремальными целевыми функциями. При глобальном поиске основной задачей является выявление тенденций глобального поведения целевой функции.

 

Существующие в настоящее время методы поиска можно разбить на три большие группы:

1. детерминированные;

2. случайные (стохастические);

3. комбинированные.

 

 

По критерию размерности допустимого множества, методы оптимизации делят на методы одномерной оптимизации и методы многомерной оптимизации.

По виду целевой функции и допустимого множества, задачи оптимизации и методы их решения можно разделить на следующие классы:

· Задачи оптимизации, в которых целевая функция и ограничения являются линейными функциями, разрешаются так называемыми методами линейного программирования.

· В противном случае имеют дело с задачей нелинейного программирования и применяют соответствующие методы. В свою очередь из них выделяют две частные задачи: 1) если и — выпуклые функции, то такую задачу называют задачей выпуклого программирования;

 

2) если , то имеют дело с задачей целочисленного (дискретного) программирования.

 

По требованиям к гладкости и наличию у целевой функции частных производных, их также можно разделить на:

· прямые методы, требующие только вычислений целевой функции в точках приближений;

· методы первого порядка: требуют вычисления первых частных производных функции;

· методы второго порядка: требуют вычисления вторых частных производных, то есть гессиана целевой функции.

 

 

Помимо того, оптимизационные методы делятся на следующие группы:

· аналитические методы (например, метод множителей Лагранжа и условия Каруша-Куна-Таккера);

· численные методы;

· графические методы.

 

В зависимости от природы множества X задачи математического программирования классифицируются как:

· задачи дискретного программирования (или комбинаторной оптимизации) — если X конечно или счётно;

· задачи целочисленного программирования — если X является подмножеством множества целых чисел;

· задачей нелинейного программирования, если ограничения или целевая функция содержат нелинейные функции и X является подмножеством конечномерного векторного пространства.

· Если же все ограничения и целевая функция содержат лишь линейные функции, то это — задача линейного программирования.

Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование.

 

Математическое программирование используется при решении оптимизационных задач исследования операций.

Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:

· Определение границ системы оптимизации

1. Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается

· Выбор управляемых переменных

1.«Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)

· Определение ограничений на управляемые переменные

1.… (равенства и/или неравенства)

· Выбор числового критерия оптимизации (например, показателя эффективности)

1.Создаём целевую функцию

 




Дата добавления: 2015-05-05; просмотров: 69 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Постановка задачи оптимизации| История

lektsii.net - Лекции.Нет - 2014-2025 год. (0.25 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав