Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Векторное произведение векторов

Читайте также:
  1. N-мерное векторное пространство
  2. Важнейшее философское произведение Иммануила Канта
  3. Векторы на плоскости. Действия над векторами, координаты векторов?
  4. Виды и типы памяти. Воспроизведение. Забывание как психологическая проблема. Кривая забывания Эббингауза. Позиционная кривая воспроизведения.
  5. Воспроизведение клеток.
  6. Исключительное право на произведение действует в течение жизни автора и … лет считая с 1 января года, следующего за годом смерти автора.
  7. Координаты вектора. Скалярное произведение векторов.
  8. Линейная зависимость и независимость системы векторов.
  9. Методика работ над поэтическим произведением.

Векторным произведением вектора на вектор называется вектор, обозначаемый символом и определяемый следующими тремя условиями:

1). Модуль вектора равен , где - угол между векторами и ;

2). Вектор перпендикулярен к каждому из вектора и ;

3). Направление вектора соответствует «правилу правой руки». Это означает, что если векторы , и приведены к общему началу, то вектор должен быть направлен так, как направлен средний палец правой руки, больой палец которой направлен по первому сомножителю (то есть по вектору ), а указательный - по второму (то есть по вектору ).

Векторное произведение зависит от порядка сомножителей, именно:

.

Модуль векторного произведения равен площади S параллелограмма, построенного на векторах и :

.

Само векторное произведение может быть выражено формулой

,

где - орт векторного произведения.

Векторное произведение обращается в нуль тогда и только тогда, когда векторы и коллинеарны. В частности, .

Если система координатных осей правая и векторы и заданы в этой системе своими координатами:

, ,

то векторное произведение вектора на вектор определяется формулой

,

или

.

 

 

 

 




Дата добавления: 2015-04-20; просмотров: 78 | Поможем написать вашу работу | Нарушение авторских прав

1 | 2 | 3 | <== 4 ==> |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав