Читайте также:
|
|
Types of spectroscopy are distinguished by the type of radiative energy involved in the interaction. In many applications, the spectrum is determined by measuring changes in the intensity or frequency of this energy. The types of radiative energy studied include:
Mass spectrometry (MS) is an analytical technique that produces spectra (singular spectrum) of the masses of the atoms or molecules comprising a sample of material. The spectra are used to determine the elemental or isotopic signature of a sample, the masses of particles and of molecules, and to elucidate the chemical structures of molecules, such as peptides and other chemical compounds. Mass spectrometry works by ionizing chemical compounds to generate charged molecules or molecule fragments and measuring their mass-to-charge ratios. In a typical MS procedure, a sample, which may be solid, liquid, or gas, is ionized. The ions are separated according to their mass-to-charge ratio. The ions are detected by a mechanism capable of detecting charged particles. Signal processing results are displayed as spectra of the relative abundance of ions as a function of the mass-to-charge ratio. The atoms or molecules can be identified by correlating known masses to the identified masses or through a characteristic fragmentation pattern.
Electroanalytical methods are a class of techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte. These methods can be broken down into several categories depending on which aspects of the cell are controlled and which are measured. The three main categories are potentiometry (the difference in electrode potentials is measured), coulometry (the cell's current is measured over time), and voltammetry (the cell's current is measured while actively altering the cell's potential).
Potentiometry passively measures the potential of a solution between two electrodes, affecting the solution very little in the process. The potential is then related to the concentration of one or more analytes. The cell structure used is often referred to as an electrode even though it actually contains two electrodes: an indicator electrode and a reference electrode (distinct from the reference electrode used in the three electrode system). Potentiometry usually uses electrodes made selectively sensitive to the ion of interest, such as a fluoride-selective electrode. The most common potentiometric electrode is the glass-membrane electrode used in a pH meter.
Coulometry uses applied current or potential to completely convert an analyte from one oxidation state to another. In these experiments, the total current passed is measured directly or indirectly to determine the number of electrons passed. Knowing the number of electrons passed can indicate the concentration of the analyte or, when the concentration is known, the number of electrons transferred in the redox reaction. Common forms of coulometry include bulk electrolysis, also known as Potentiostatic coulometry or controlled potential coulometry, as well as a variety of coulometric titrations.
Voltammetry applies a constant and/or varying potential at an electrode's surface and measures the resulting current with a three electrode system. This method can reveal the reduction potential of an analyte and its electrochemical reactivity. This method in practical terms is nondestructive since only a very small amount of the analyte is consumed at the two-dimensional surface of the working and auxiliary electrodes. In practice the analyte solutions is usually disposed of since it is difficult to separate the analyte from the bulk electrolyte and the experiment requires a small amount of analyte. A normal experiment may involve 1–10 mL solution with an analyte concentration between 1 and 10 mmol/L. Chemically modified electrodes are employed for high sensitive electrochemical determination of organic molecules as well as metal ions.
Polarography is a subclass of voltammetry that uses a dropping mercury electrode as the working electrode.
Amperometry is the term indicating the whole of electrochemical techniques in which a current is measured as a function of an independent variable that is, typically, time or electrode potential. Chronoamperometry is the technique in which the current is measured, at a fixed potential, at different times since the start of polarisation. Chronoamperometry is typically carried out in unstirred solution and at fixed electrode, i.e., under experimental conditions avoiding convection as the mass transfer to the electrode. On the other hand, voltammetry is a subclass of amperometry, in which the current is measured at varying the potential applied to the electrode. According to the waveform that describes the way how the potential is varied as a function of time, the different voltammetric techniques are defined. Confusion arose recently about the correct use of many terms proper of electrochemistry/electroanalysis, often owing to the diffusion of electroanalytical techniques in fields where they constitute an instrument to use, not being the 'core business' of the study. Though electrochemists are pleased about this, they invite to use the terms properly, in order to avoid fatal misunderstandings.
Дата добавления: 2015-09-11; просмотров: 94 | Поможем написать вашу работу | Нарушение авторских прав |