Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Последовательность проектировочного расчета конической зубчатой передачи

Читайте также:
  1. Альтернативный метод расчета по корректированным подуровням звукового давления
  2. Анализ объема производства и продажи продукции: задачи, показатели, последовательность проведения анализа факторов, влияющих на объем производства и продажи продукции.
  3. Анализ режима холостого хода линии электропередачи.
  4. Анализ результатов расчета вероятности отказа невосстанавливаемых систем без использования теорем умножения и сложения вероятностей
  5. Аудит расчетов с персоналом по оплате труда: цель и программа аудита, методика проверки. Ошибки, допускаемые при расчетах оплаты труда.
  6. Волновые зубчатые передачи. Устройство передачи и расчет на прочность
  7. Вопрс№4.Система передачи азимута.
  8. Вывод основных расчетных формул для расчета изгибаемых железобетонных элементов прямоугольного сечения с одиночной арматурой.
  9. Вывод основных расчетных формул для расчета изгибаемых железобетонных элементов с одиночной арматурой по нормальным сечениям.
  10. Геометрическая (лучевая) теория расчета звукового поля в помещении. Структура первых отражений, их влияние на оценку качества звучания. Вид общей структуры процесса реверберации.

Последовательность расчета закрытой передачи.

1. Определить передаточное число и углы делительных конусов шес­терни и колеса и .

2. В зависимости от условий работы передачи выбрать материалы ко­лес, назначить термическую обработку и значения твердости рабочих по­верхностей зубьев.

3. Определить базовое число циклов , расчетную циклическую дол­говечность , коэффициенты режима, допускаемые контактные напряже­ния и допускаемые напряжения изгиба.

4. Выбрать коэффициент длины зуба.

5. Определить средний делительный диаметр из условия контактной прочности [формула (32)].

6. Задать число зубьев шестерни , определить число зубьев колеса

7.Рассчитать внешний модуль ,и округлить его до стандартного зна­чения (см. табл. 3), а также средний модуль .

8. Определить числа зубьев эквивалентных колес и и по табл. 8 — коэффициенты формы зуба шестерни и колеса .

9. Проверить прочность зубьев по напряжениям изгиба. При неудовле­творительных результатах необходимо путем соответствующего изменения числа зубьев и модуля при том же конусном расстоянии до­биться определенного изменения напряжений изгиба, не нарушая при этом условия контактной прочности.

10. Произвести геометрический расчет передачи (см. табл. 17).

11. Определить окружную скорость колес и по табл. 14 назначить со­ответствующую степень точности.

Последовательность расчета открытых конических передач.

1. Определить передаточное число и углы делительных конусов шестерни и колеса и .

2. В зависимости от условий работы передачи выбрать материалы ко­лес, назначить термическую обработку и значения твердости рабочих по­верхностей зубьев.

3. Определить базовое число циклов ,расчетную циклическую дол­говечность, коэффициенты режима и определить допускаемые напряжения изгиба.

4. Задать число зубьев шестерни и по передаточному числу опреде­лить число зубьев колеса .

5. Определить число зубьев эквивалентных колес и коэффициен­ты формы зуба и по табл. 8.

6. Выбрать коэффициент длины зуба (ширины венца) .

7.Из условия прочности на изгиб (формула 29) определить средний модуль , после чего подсчитать внешний модуль , значение которого округлить до ближайшего большего стандартного (см. табл. 3). При необ­ходимости следует пересчитать в зависимости от стандартного .

8. Произвести геометрический расчет передачи (см. табл. 17).

9. Определить окружную скорость колес и по табл. 14 назначить со­ответствующую степень точности зацепления.

Зубчатые передачи с зацеплением Новикова. Устройство, основные геометрические соотношения?

Достоинства и недостатки передач с зацеплением Новикова. Высо­кая нагрузочная способность является основным достоинством передач с зацеплением Новикова. При твердости рабочих поверхностей до НВ 350 можно принимать допускаемую нагрузку примерно в 2,5 раза больше до­пускаемой нагрузки для эвольвентных прямозубых передач тех же основ­ных размеров, выполненных из тех же материалов, с той же термической обработкой (сравнение допускаемых нагрузок произведено при коэффици­енте нагрузки К= 1).

Благодаря большей нагрузочной способности передачи с зацеплением Новикова более компактны, имеют почти в 2 раза меньшие габариты по сравнению с передачами с эвольвентным зацеплением при одинаковой пе­редаваемой мощности.

Передачи с зацеплением Новикова допускают большее передаточное число, а вследствие хорошо удерживающейся масляной пленки между со­прикасающимися зубьями уменьшается изнашивание зубьев, повышается КПД передачи.

Потери на трение в зацеплении Новикова примерно в 2 раза меньше, чем потери в эвольвентном зацеплении. Шум во время их работы значи­тельно ниже.

Недостатками являются:

- большая (чем в эвольвентных зацеплениях) чувствительность к изме­нению межосевого расстояния;

- с увеличением нагрузки в зацеплении возрастает осевая составляю­щая, что, в свою очередь, усложняет конструкцию применяемых подшипниковых узлов;

- при ухудшении контакта (например, в случае перекоса валов и изме­нения межосевого расстояния) вся нагрузка, действующая на зубья, может сосредоточиться на небольшом участке длины зубьев, в ре­зультате чего зубья могут оказаться сильно перегруженными;

- необходимость иметь две специальные фрезы для нарезания зубьев (для шестерни и колеса).

а)

Рис. 59. Косозубая передача с зацеплением М.Л. Новикова

Расчет передачи с зацеплением Новикова на контактную прочность?

 

Планетарные зубчатые передачи. Устройство передачи и расчет на прочность

Передачи, имеющие зубчатые или фрикционные колеса с перемещающимися осям, называют планетарными. Эти подвижные колёса подобно планетам Солнечной системы вращаются вокруг своих осей и одновременно перемещаются вместе с осями, совершая плоское движение, называются они сателлитами (лат. satellitum – спутник). Подвижные колёса катятся по центральным колёсам (их иногда называют солнечными колёсами), имея с ними внешнее, а с корончатым колесом внутреннее зацепление. Оси сателлитов закреплены в водиле и вращаются вместе с ним вокруг центральной оси.

Наиболее распространена зубчатая однорядная планетарная передача (рис.60). Она состоит из центрального колеса 1 с наружными зубьями, неподвижного (центрального) колеса 2 с внутренними зубьями и водила на котором закреплены оси планетарных колес g (или сателлитов).

Рис.60. Планетарная передача

 

Водило вместе с сателлитами вращается вокруг центральной оси, а са­теллиты обкатываются по центральным колесам и вращаются вокруг своих осей, совершая движения, подобные движению планет. При неподвижном колесе 2 движение передается от колеса 1 к водилу h или наоборот.

Планетарную передачу, совершаемую подвижными звеньями (оба иентральных колеса и водило), называют дифференциалом. С помощью диффе­ренциала одно движение можно разложить на два или два движения сло­жить в одно: от колеса 2 движение можно передавать одновременно колесу 1 и водилу h или от колес 1 и 2 к водилу g и т. д. Планетарную передачу ус­пешно применяют в транспортном машиностроении, станкостроении, приборостроении.

Достоинства и недостатки планетарных передач.

Основное достоинство — широкие кинематические возможности, по­зволяющие использовать передачу в качестве редуктора коробки скоро­стей, передаточное число в которой изменяется путем поочередного тормо­жения различных звеньев, и как дифференциальный механизм.

- Планетарный принцип позволяет получать большие передаточные чис­ла (до тысячи и больше) без применения многоступенчатых передач.

- Эти передачи компактные и имеют малую массу. Переход от простых передач к планетарным позволяет во многих случаях снизить их массу в 4 раза и более.

- Сателлиты в планетарной передаче расположены симметрично, а это снижает нагрузки на опоры (силы в передаче взаимно уравновешиваются), что приводит к снижению потерь и упрощает конструкцию опор.

- Эти передачи работают с меньшим шумом, чем обычные зубчатые и имеют более лёгкое управление и регулирование скорости;

- Имеют малый шум вследствие замыкания сил в механизме.

Основные недостатки: повышенные требования к точности изготовле­ния и монтажа (для обеспечения сборки планетарных передач необходимо соблюдать условие соосности (совпадение геометрических центров колёс); условие сборки (сумма зубьев центральных колёс кратна числу сателлитов) и соседства (вершины зубьев сателлитов не соприкасаются друг с другом); резкое снижение КПД передачи с увеличением передаточ­ного отношения.

Передаточное отношение.

Для определения передаточного отношения планетарной передачи ис­пользуется метод Виллиса — метод останова водила.

Передаточное отношение планетарной передачи (см. рис. 60)

(33)

где и — угловые скорости колес 1 и 2 относительно води­ла h; и числа зубьев этих колес.

Для реальной планетарной передачи (колесо 2 закреплено неподвиж­но, колесо 1 — ведущее, водило h ведомое) при из формулы (36) получим

или

(34)

Для однорядной планетарной передачи , для многоступен­чатых , для кинематических передач . Чем больше передаточное отношение планетарной передачи, тем меньше КПД (0,99...0,1).

Расчет на контактную прочность зубьев планетарных передач проводится по аналогии с расчетом обыкновенных зубчатых передач от­дельно для каждого зацепления (см. рис.60): пара колес 1—g (внешнее зацепление) и g—2 — (внутреннее). Для таких передач достаточно рассчи­тать только внешнее зацепление, так как модули и силы в зацеплениях одинаковые, а внутреннее зацепление прочнее внешнего.

Проектировочный расчет планетарной передачи на контактную ус­талость активных поверхностей зубьев проводится по следующей формуле:

(35)

где d 1 делительный диаметр ведущего звена (шестерни), мм; Kd = 78 МПа — вспомогательный коэффициент (рассматриваются сталь­ные прямозубые колеса); T 2 — вращающий момент на шестерне, Нмм; — коэффициент нагрузки (см. табл.4); — коэффици­ент, учитывающий неравномерность распределения нагрузки среди сател­литов; — передаточное отношение; — коэффициент длины зуба (ширины колеса); — допускаемое контактное напряжение, МПа.

При расчете планетарных передач выбор числа зубьев колес зависит не только от передаточного отношения , но и от условий собираемости пере­дач. При этом сумма зубьев центральных колес должна быть кратной числу сателлитов (лучше 3).




Дата добавления: 2015-09-11; просмотров: 76 | Поможем написать вашу работу | Нарушение авторских прав

Общие сведения и классификация зубчатых передач | Смазывание зубчатых передач | Основные элементы зубчатой передачи. Термины, определения и обозначения | Модуль является основной характеристикой размеров зубьев. Для пары зацепляющихся колес модуль должен быть одинаковым. | Цилиндрические прямозубые передачи. Устройство и основные геометрические соотношения | Передач с эвольвентным профилем зубьев | Цилиндрические косозубые и шевронные зубчатые передачи. Устройство и основные геометрические и силовые соотношения | Последовательность проектировочного расчета цилиндрической косозубой передачи | Общие сведения, устройство передачи, материалы, область применения, достоинства и недостатки | Геометрическое соотношение размеров червячной некорригированной передачи с архимедовым червяком |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав