Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Индукция как метод познания. Индуктивные умозаключения.

Читайте также:
  1. A. гностическим методам
  2. Amp;Сравнительная характеристика различных методов оценки стоимости
  3. C) Методы стимулирования поведения деятельности
  4. E) мировоззренческая, гносеологическая, методологическая.
  5. I ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ
  6. I. Из истории развития методики развития речи
  7. I. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ
  8. I. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ
  9. I. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ
  10. I. ОБЩИЕ ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Индуктивным называется умозаключение, в котором на основании принадлежности признака отдельным предметам или частям некоторого класса делают вывод о его принадлежности классу в целом.

Основная функция индуктивных выводов в процессе познания — генерализация, т.е. получение общих суждений.

В зависимости от полноты и законченности эмпирического исследования различают два вида индуктивных умозаключений: полную индукцию и неполную индукцию.

Полная индукция — это умозаключение, в котором на основе принадлежности каждому элементу или каждой части класса определенного признака делают вывод о его принадлежности классу в целом.

Индуктивные умозаключения такого типа применяются лишь в тех случаях, когда имеют дело с закрытыми классами, число элементов в которых является конечным и легко обозримым. Например, число государств в Европе, количество промышленных предприятий в данном регионе, число субъектов федерации в данном государстве и т.п.

Схема

1)S1 имеет признак P

S2 имеет признак P

……………………

Sn имеет признак P

2)S1, S2,…Sn – составляют класс K

Заключение:

Всем предметам класса К присущ признак Р

Вывод в умозаключении полной индукции носит демонстративный характер. Это означает, что при истинности посылок заключение в выводе будет необходимо истинным.

Демонстративность полной индукции позволяет использовать этот вид умозаключения в доказательном рассуждении. Так, в геометрии теорема о сумме внутренних углов треугольника доказывается отдельно для трех видов треугольников: остроугольных, прямоугольных и тупоугольных.

Неполная индукция — это умозаключение, в котором на основе принадлежности признака некоторым элементам или частям класса делают вывод о его принадлежности классу в целом.

Схема

1)S1 имеет признак P

S2 имеет признак P

……………………

Sn имеет признак P

2)S1, S2,…Sn – принадлежит классу K

Заключение:

Классу К,вероятно, присущ признак Р

Неполнота индуктивного обобщения выражается в том, что исследуют не все, а лишь некоторые элементы или части класса — от S1 до Sn

Тем самым для неполной индукции характерно ослабленное логическое следование истинные посылки обеспечивают получение не достоверного, а лишь проблематичного заключения. При этом обнаружение хотя бы одного случая, противоречащего обобщению, делает индуктивный вывод несостоятельным.

На этом основании неполную индукцию относят к правдоподобным (недемонстративным) умозаключениям. В таких выводах заключение следует из истинных посылок с определенной степенью вероятности, которая может колебаться от маловероятной до весьма вероятной.

 

По способу отбора различают два вида неполной индукции: (1) индукцию путем перечисления, получившую название популярной индукции, и (2) индукцию путем отбора, которую называют научной индукцией.

Популярной индукцией называют обобщение, в котором путем перечисления устанавливают принадлежность признака некоторым предметам или частям класса и на этой основе проблематично заключают о его принадлежности всему классу.

Такого рода обобщения бывают связаны с наблюдениями над погодой, влиянием климатических условий на урожай, причинами распространения болезней.

Научной индукцией называют умозаключение, в котором обобщение строится путем отбора необходимых и исключения случайных обстоятельств.

В зависимости от способов исследования различают: (1) индукцию методом отбора (селекции) и (2) индукцию методом исключения (элиминации).

1. Индукция методом отбора

Индукция методом отбора, или селективная индукция, — это умозаключение, в котором вывод о принадлежности признака классу (множеству) основывается на знании об образце (подмножестве), полученном методичным отбором явлений из различных частей этого класса.

2. Индукция методом исключения

Индукция методом исключения, или элиминативная индукция, — это система умозаключений, в которой выводы о причинах исследуемых явлений строятся путем обнаружения подтверждающих обстоятельств и исключения обстоятельств, не удовлетворяющих свойствам причинной связи.




Дата добавления: 2015-01-05; просмотров: 165 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав