Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Вычисление ренты. Расчетов сроков вклада (займа).

Читайте также:
  1. E) задачи на вычисление боковой поверхности геометрических фигур
  2. E)задачина вычисление боковой поверхности геометрических фигур 1 страница
  3. E)задачина вычисление боковой поверхности геометрических фигур 2 страница
  4. E)задачина вычисление боковой поверхности геометрических фигур 3 страница
  5. E)задачина вычисление боковой поверхности геометрических фигур 4 страница
  6. АВТОМАТИЗАЦИЯ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ РАСЧЕТОВ
  7. Алгоритм расчетов методами рыночного/сравнительного подхода
  8. Анализ результатов статистических компьютерных расчетов
  9. Анализ своевременности и полноты выплат по депозитным вкладам
  10. Аудит расчетов по договору простого товарищества

Рассмотрим схему с многократными взносами или выплатами.

Поток платежей, все члены которого имеют одинаковую величину R и разделены равными промежутками времени, называют постоянной рентой.

Один из возможных вариантов такого потока {-Р, -R, -R,..., -R, S}, т.е. начальный взнос Р и последующие выплаты R дают в итоге S. Если платежи производятся в конце периодов, то ренту называют обыкновенной, или постнумерандо. Если же платежи происходят в начале периодов, то ренту называют пренумерандо.

Для расчетов используется формулы:

 

 

 

Р — современное значение.

S — будущее значение.

R — периодическая выплата.

r — процентная ставка за период.

n — количество периодов.

type — тип ренты, если type = 0 или опущен, то рента постнумерандо (выплата в конце периода), если type = 1, то рента пренумерандо (выплата в начале периода).

Задача №5. На счет в банке вносится сумма 1000 долл. в течение 10 лет равными долями 1) в конце каждого года 2) в начале каждого года. Годовая ставка - 4%. Какая сумма будет на счете после 10 лет в обоих случаях?



Дата добавления: 2015-01-07; просмотров: 90 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.206 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав