Читайте также:
|
|
Пусть генеральные совокупности исследуемых случайных величин Х и Y распределены нормально: Х~N(mх,σх) и Y~N(my,σy). Генеральные дисперсии D(X) и D(Y) неизвестны.
Из генеральных совокупностей Х и Y сделаем выборки объемами n1 и n2. Найдем соответственно выборочные средние и
и «исправленные» дисперсии
и
.
При заданном уровне значимости α необходимо проверить нулевую гипотезу, состоящую в том, что «исправленные» выборочные дисперсии различаются незначимо, т.е. генеральные дисперсии равны между собой:
Но: D(Х)= D(Y).
Сравнение производится с помощью специально подобранной случайной величины – статистического критерия F, имеющего закон распределения Фишера-Снедекора со степенями свободы k1=n1- 1 и k2=n2- 1:
где и
– большая и меньшая дисперсия соответственно; k1 – число степеней свободы большей дисперсии; k2 – число степеней свободы меньшей дисперсии.
Критическая область строится в зависимости от вида альтернативной (конкурирующей) гипотезы.
Первый случай.
Выдвигаем нулевую гипотезу Но: D(Х)= D(Y).
Выдвигаем альтернативную гипотезу Н1: D(Х)≠ D(Y).
В этом случае строят двустороннюю критическую область.
Порядок проверки нулевой гипотезы:
1) по выборке определяем наблюдаемое значение критерия .
2) по таблице критических точек распределения Фишера-Снедекора (см. Приложение 2) определяем критическую точку в зависимости от уровня значимости α и числа степеней свободы k1=n1- 1 и k2=n2- 1.
3) Если , то нулевая гипотеза принимается.
Если , то нулевая гипотеза отвергается и принимается альтернативная.
Второй случай.
Выдвигаем нулевую гипотезу Но: D(Х)= D(Y).
Выдвигаем альтернативную гипотезу Н1: D(Х)> D(Y).
В этом случае строят правостороннюю критическую область.
Порядок проверки нулевой гипотезы:
1) по выборке определяем наблюдаемое значение критерия .
2) по таблице критических точек распределения Фишера-Снедекора (см. Приложение 2) определяем критическую точку в зависимости от уровня значимости α и числа степеней свободы k1=n1- 1 и k2=n2- 1.
3) Если , то нулевая гипотеза принимается.
Если , то нулевая гипотеза отвергается и принимается альтернативная.
ПРИМЕР 2. Технологи механосборочного цеха считают, что применение нового резца позволит сократить время обработки детали. Пять деталей были изготовлены старым резцом: среднее время обработки одной детали составило 3,3 мин с «исправленной» дисперсией – 0,25 мин2. Шесть деталей были изготовлены новым резцом: среднее время обработки одной детали составило 2,48 мин с «исправленной» дисперсией – 0,108 мин2. При уровне значимости 0,05 проверьте, значимо ли различаются «исправленные» выборочные дисперсии.
РЕШЕНИЕ. По условию n1 =5; мин;
мин.2; n2 =6;
мин;
мин2, α=0,05.
Выдвигаем нулевую гипотезу Но: D(Х)= D(Y). Относительно альтернативной гипотезы возможны два случая: а) D(Х)≠ D(Y).; б) Н1: D(Х)> D(Y). (так как ). Рассмотрим эти случаи.
а) Первый случай.
Выдвигаем нулевую гипотезу Но: D(Х)= D(Y).
Выдвигаем альтернативную гипотезу Н1: D(Х)≠ D(Y).
В этом случае строят двустороннюю критическую область.
Порядок проверки нулевой гипотезы:
1) по выборке определяем наблюдаемое значение критерия :
2) по таблице критических точек распределения Фишера-Снедекора (см. Приложение 2) определяем критическую точку в зависимости от уровня значимости α= 0,05 и числа степеней свободы k1=n1- 1=5-1=4 и k2=n2- 1=6-1=5:
3) Если , то нулевая гипотеза принимается.
б) Второй случай.
Выдвигаем нулевую гипотезу Но: D(Х)= D(Y).
Выдвигаем альтернативную гипотезу Н1: D(Х)> D(Y).
В этом случае строят правостороннюю критическую область.
Порядок проверки нулевой гипотезы:
1) по выборке определяем наблюдаемое значение критерия
2) по таблице критических точек распределения Фишера-Снедекора (см. Приложение 2) определяем критическую точку в зависимости от уровня значимости α= 0,02 и числа степеней свободы k1=n1- 1=5-1=4 и k2=n2- 1=6-1=5:
3) Если , то нулевая гипотеза принимается.
Таким образом, с вероятностью 0,95 можно утверждать, что «исправленные» выборочные дисперсии различаются незначимо и, следовательно, можно считать, что генеральные дисперсии равны.
Дата добавления: 2015-01-12; просмотров: 67 | Поможем написать вашу работу | Нарушение авторских прав |