Читайте также:
|
|
Пусть (x, h) - двумерная случайная величина, тогда M(x, h)=(M(x), M(h)), т.е. математическое ожидание случайного вектора - это вектор из математических ожиданий компонент вектора.
Если (x, h) - дискретный случайный вектор с распределением
y1 | y2 | ... | ym | |
x1 | p11 | p12 | ... | p1m |
x2 | p12 | p12 | ... | p2m |
... | ... | ... | pij | ... |
xn | pn1 | pn2 | ... | pnm |
то математические ожидания компонент вычисляются по формулам:
,
.
Эти формулы можно записать в сокращенном виде.
Обозначим и
, тогда
и
.
Если p(x, h)(x, y)- совместная плотность распределения непрерывной двумерной случайной величины (x, h), то
и
.
Поскольку -плотность распределения случайной величины x, то
и, аналогично,
.
Дисперсия
Понятие дисперсии обобщается на многомерные случайные величины нетривиальным образом. Это обобщение будет сделано в следующем разделе. Здесь лишь приведем формулы для вычисления дисперсии компонент двумерного случайного вектора.
Если (x, h) - двумерная случайная величина, то
Dx = M(x - Mx)2 = Mx 2 - M(x)2, Dh = M(h - Mh)2 = Mh 2 - M(h)2.
Входящие в эту формулу математические ожидания вычисляются по приведенным выше формулам.
Условное математическое ожидание
Между случайными величинами может существовать функциональная зависимость. Например, если x - случайная величина и h =x 2, то h - тоже случайная величина, связанная с xфункциональной зависимостью. В то же время между случайными величинами может существовать зависимость другого рода, называемая стохастической. В разделе, посвященном условным распределениям уже обсуждалась такая зависимость. Из рассмотренных там примеров видно, что информация о значении одной случайной величины (одной компоненты случайного вектора) изменяет распределение другой случайной величины (другой компоненты случайного вектора), а это может, вообще говоря, изменить и числовые характеристики случайных величин.
Математическое ожидание, вычисленное по условному распределению, называется условным математическим ожиданием.
Для двумерного дискретного случайного вектора (x, h) с распределением
Если между случайными величинами x и h существует стохастическая связь, то одним из параметров, характеризующих меру этой связи является ковариация cov(x, h). Ковариацию вычисляют по формулам cov(x, h)=M[(x - Mx)(h - Mh)] = M(x h) - Mx Mh.
Если случайные величины x и h независимы, то cov(x,h)=0.
Обратное, вообще говоря, неверно. Из равенства нулю ковариации не следует независимость случайных величин. Случайные величины могут быть зависимыми в то время как их ковариация нулевая! Но зато, если ковариация случайных величин отлична от нуля, то между ними существует стохастическая связь, мерой которой и является величина ковариации.
Свойства ковариации:
cov(x, x) = Dx;
Понятно, что значение ковариации зависит не только от “тесноты” связи случайных величин, но и от самих значений этих величин, например, от единиц измерения этих значений. Для исключения этой зависимости вместо ковариации используется безразмерный коэффициент корреляции .
22.Понятие функции регрессии.
Для количественного описания взаимосвязей между экономическими переменными в статистике используют методы регрессии и корреляции.
Регрессия - величина, выражающая зависимость среднего значения случайной величины у от значений случайной величины х.
Уравнение регрессии выражает среднюю величину одного признака как функцию другого.
Функция регрессии - это модель вида у = л», где у - зависимая переменная (результативный признак); х - независимая, или объясняющая, переменная (признак-фактор).
Линия регрессии - график функции у = f (x).
2 типа взаимосвязей между х и у:
1) может быть неизвестно, какая из двух переменных является независимой, а какая - зависимой, переменные равноправны, это взаимосвязь корреляционного типа;
2) если х и у неравноправны и одна из них рассматривается как объясняющая (независимая) переменная, а другая - как зависимая, то это взаимосвязь регрессионного типа.
Виды регрессий:
1) гиперболическая - регрессия равносторонней гиперболы: у = а + b / х + Е;
2) линейная - регрессия, применяемая в статистике в виде четкой экономической интерпретации ее параметров: у = а+b*х+Е;
3) логарифмически линейная - регрессия вида: In у = In а + b * In x + In E
4) множественная - регрессия между переменными у и х1, х2... xm, т. е. модель вида: у = f(х1, х2... xm)+E, где у - зависимая переменная (результативный признак), х1, х2... xm- независимые, объясняющие переменные (признаки-факторы), Е- возмущение или стохастическая переменная, включающая влияние неучтенных факторов в модели;
5) нелинейная - регрессия, нелинейная относительно включенных в анализ объясняющих переменных, но линейная по оцениваемым параметрам; или регрессия, нелинейная по оцениваемым параметрам.
6) обратная - регрессия, приводимая к линейному виду, реализованная в стандартных пакетах прикладных программ вида: у = 1/a + b*х+Е;
7) парная - регрессия между двумя переменными у и x, т. е, модель вида: у = f (x) + Е, где у -зависимая переменная (результативный признак), x – независимая, объясняющая переменная (признак - фактор), Е - возмущение, или стохастическая переменная, включающая влияние неучтенных факторов в модели.
Дата добавления: 2015-01-12; просмотров: 218 | Поможем написать вашу работу | Нарушение авторских прав |