Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Аксиоматическое определение вероятности

Читайте также:
  1. I Раздел. Определение провозной способности судна.
  2. I. Дайте определение понятиям
  3. I. Определение эпидемического процесса и методологическое обоснование разделов учения об эпидемическом процессе.
  4. I. Определение эпидемического процесса и методологическое обоснование разделов учения об эпидемическом процессе.
  5. I.1 Определение
  6. III. Психологическое сопровождение учебно-воспитательного процесса (участие в формировании «умения учиться») Определение мотивации учебной деятельности
  7. IV. ОПРЕДЕЛЕНИЕ КРУГА ИСТОЧНИКОВ, СтруктурЫ и объемА курсовой и выпускной квалификационной (дипломной) работы
  8. quot;Определение показателя преломления и концентрации растворов с помощью рефрактометра".
  9. SWOT-анализ и определение ключевых проблем отеля
  10. VII. Определение методов исследования.
Помощь в написании учебных работ
1500+ квалифицированных специалистов готовы вам помочь

Пусть - пространство элементарных исходов некоторого испытания, а - -алгебра событий, определенная на этом пространстве. Каждому событию множества ставится в соответствие величина , называемая вероятностью события и удовлетворяющая следующим условиям:

А1. .

А2. Вероятность достоверного события .

А3. Если в последовательности событий события попарно несовместны (т.е. ), то .

Таким образом, вероятность есть функция , удовлетворяющая условиям А1-А3, или, как говорят, нормированная (вероятностная) мера, заданная на множестве . Аксиомы А1-А3 называются аксиомами теории вероятностей.

Заметим, что аксиома А3 эквивалентна двум следующим аксиомам (без доказательства):

А4. Если и несовместны, то .

А5. Если и , или и , то .

Определение 3. Тройка , где - пространство элементарных исходов, - -алгебра его подмножеств, а вероятностная мера на называется вероятностным пространством.
4.Теорема сложения и умножения вероятностей. Независимые события. Условная вероятность

Теорема 1. (Сложения вероятностей)

Вероятность суммы двух совместных событий и равна сумме вероятностей этих событий без вероятности их совместного наступления

.

Вероятность суммы несовместных событий рвана сумме их вероятностей, т.е.

.

.

События и называются независимыми, если вероятность не зависит от того, произошло событие или нет.

Событие называется зависимым от события ,если вероятность события зависит от того, произошло или не произошло событие .

Вероятность события ,вычисленная при условии, что имело место, называется условной вероятностью .

Теорема 2. (Умножения вероятностей)

Вероятность произведения двух зависимых событий и равна произведению вероятности одного их этих событий на условную вероятность другого, при условии, что первое наступило:

.

Вероятность произведения двух независимых событий равна произведению вероятностей этих событий:

.

Определение 1. Вероятность события , вычисленная при условии, что имело место событие , называется условной вероятностью события относительно события и обозначается .

Легко заметить, используя классическое или геометрическое определение вероятности, что (см. рис14), однако для произвольного пространства , доказать это невозможно, поэтому в аксиоматической теории понятие условной вероятности дается как определение.

Определение 2. Условной вероятностью события относительно события называется величина, равная

,

(при условии .
5.Формула полной вероятности

Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий, то вероятность события Авычисляется по формуле

.

Эта формула называется формулой полной вероятности.

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами. Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

,

откуда

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса). Вероятности гипотез называются апостериорными вероятностями, тогда как - априорными вероятностями.

Доверь свою работу кандидату наук!
1500+ квалифицированных специалистов готовы вам помочь



Дата добавления: 2015-01-12; просмотров: 18 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2022 год. (0.02 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав