Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Билет №20.

Читайте также:
  1. N13 Билет
  2. Активация Билета
  3. Билет 1
  4. Билет 1
  5. Билет 1
  6. Билет 1
  7. Билет 1
  8. БИЛЕТ 1
  9. Билет 1
  10. Билет 1

Цитогенетика человека. Наследственные заболевания человека

 

ЦИТОГЕНЕ́ТИКА,- область генетики, изучающая цитологические основы наследственности и изменчивости. Основной предмет исследований цитогенетики — хромосомы, их организация, функционирование и наследование. Цитогенетика использует методы генетики и цитологии и тесно связана с разделами этих наук — молекулярной генетикой, цитохимией, кариологией и другими. При классическом цитогенетическом анализе проводят одновременно цитологическое (микроскопическое) исследование хромосом и генетический анализ наследования признаков. Цитогенетику подразделяют на общую, в которую включают также популяционную и радиационную цитогенетику, и частную — цитогенетику растений, цитогенетику животных и цитогенетику человека

Наследственные заболевания человека:

 

1. Синдром Марфана- Наследственное заболевание соединительной ткани, проявляющееся изменениями скелета: высоким ростом с относительно коротким туловищем, длинными паукообразными пальцами,разболтанностью суставов, часто сколиозом, деформациями грудной клетки, аркообразным небом. Характерны также поражения глаз. В связи с аномалиями сердечно-сосудистой системы средняя продолжительность жизни сокращена.

2. Ихтиоз – К наследственным дерматозам относятся заболевания, выражающиеся в изменении скорости отшелушивания рогового слоя. Таким заболеванием является ихтиоз. Для него характерно появление в дошкольном возрасте повышенной сухости,шелушения кожи без воспалительных явлений. Локализация кожных нарушения бывает различной и имеет разную степень выраженности.

3. Болезнь Дауна – болезнь, обусловленная аномалией хромосомного набора основными проявлениями которой являются умственная отсталость, своеобразный внешний облик больного и врожденные пороки развития.

4. Дальтони́зм — наследственная, реже приобретённая особенность зрения человека и приматов, выражающаяся в неспособности различать один или несколько цветов. Названа в честь Джона Дальтона, который впервые описал один из видов цветовой слепоты на основании собственных ощущений в 1794 году.

Билет 23. Химический состав клетки. Нуклеиновые кислоты. АТФ. Химический состав клетки: Каждая клетка содержит множество химических элементов, участвующих в различных химических реакциях. Химические процессы, протекающие в клетке — одно из основных условий её жизни, развития и функционирования. Условно все элементы клетки можно разделить на две группы. Макроэлементы и микроэлементы. К макроэлементам относятся кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %),хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %). К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк. Нуклеиновые кислоты: Нуклеи́новая кисло́та (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. ДНК (дезоксирибонуклеиновая кислота). Сахар — дезоксирибоза, азотистые основания: гуанин (Г), аденин (А), тимин (Т) и цитозин (Ц). РНК (рибонуклеиновая кислота). Сахар — рибоза, азотистые основания: гуанин (Г), аденин (А), урацил (У) и цитозин (Ц). Структура полинуклеотидной цепочки аналогична таковой в ДНК. Из-за особенностей рибозы молекулы РНК часто имеют различные вторичные и третичные структуры, образуя комплементарные участки между разными цепями. АТФ: Аденозинтрифосфа́т (сокр. АТФ, англ. АТР) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ был открыт в 1929 году Карлом Ломанном, а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке. Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения. Билет №21. Строение эукариотической клетки. Органоиды, характерные для животной и растительной клеток. Строение и свойства. Функции Плазматическая мембрана Тонкая пленка 7-10 мк, состоящая из двойного слоя фосфолипидов, с включением белков. Гидрофобные (отталкивающие воду) молекулы липидов погружены в толщу мембраны, а гидрофильные - обращены наружу в окружающую водную среду. К некоторым белкам на поверхности клеток прикреплены углеводы; такие белки называют гликопротеинами, они являются рецепторами. Снаружи углеводный слой - гликокаликс. Белки, гликопротеины и липиды, находящиеся на поверхности разных клеток, очень специфичны и являются указателями типа клеток. С их помощью клетки «узнают» друг друга (например, сперматозоид «узнает» яйцеклетку). Сходное строение имеют внутриклеточные мембраны • Изолирует клетку от окружающей среды. • Обеспечивает обмен веществ и энергии между клеткой и внешней средой, движение клеток и сцепление их друг с другом. • Соединяет клетки в ткани. • Клеточная мембрана обладает избира­тельной проницаемостью, регулирует поступление веществ в клетку, водный баланс, выведение продуктов обмена. • Участвует в фагоцитозе и пиноцитозе. • Большинство мембранных белков служат катализаторами химических реакций, осуществляют транспорт веществ или являются рецепторами Цитоплазма Цитоплазма - коллоидный раствор различных солей и органических веществ - цитозоль. Вода составляет 60-90% всей массы цитоплазмы. Белки - 10-20%, а иногда до 70% сухой массы. Система белковых нитей, пронизывающая цитоплазму называется цитоскелетом. Кроме белков в состав цитоплазмы могут входить липиды 23%, различные органические 1,5% и неорганические соединения 1,5%. Цитоплазма находится в постоянном движении • Жидкая среда клетки для химических реакций. . Участвует в передвижении веществ. • Поддерживает тургор клетки. • Терморегуляция. . Механическая функция, за счет цитоскелета Ядро- важнейший органоид эукариотической клетки, в прокариотической клетке отсутствует Окружено двухслойной пористой мембраной, образующей комплекс с остальными мембранами клетки. Содержит хроматин - комплекс ДНК и белка, образует хромосомы в момент деления клетки. Ядрышко- состоит из белка и РНК, может быть несколько. Ядерный сок - кариолимфа - коллоидный раствор органических и неорганических веществ • Хранение наследственной информации в хромосомах.   • Регуляция синтеза белка и процессов происходящих в клетке. • Транспорт веществ. . Синтез РНК (иРНК, тРНК, рРНК), а также сборка рибосом. • Руководит процессами самовоспроизведения и процессами развития организма Эндоплазматическая сеть (ретикулум) Шероховатая (гранулярная) ЭС - представляет собой систему мембран, образующих канальцы, цистерны, трубочки, несущую рибосомы. Строение мембран сходно с наружной мембраной и образует с ней единую сеть • Синтез белка на рибосомах. • Транспорт веществ по цистернам и трубочкам. • Деление клетки на отдельные секции -компартменты Гладкая ЭС - имеет такое же строение, как и шероховатая, но не несет рибосом • Участвует в синтезе липидов, белок не синтезируется. • Остальные функции, сходные с ШЭР Рибосомы Мельчайшие органоиды клетки диаметром около 20 нм. Рибосомы состоят из двух неравных субъединиц (частиц): большой и малой. В состав рибосомы входят рибосомальная РНК и белки. Синтезируются в ядрышке. Объединяются вдоль иРНК в цепочки, образуя полисому Биосинтез первичной структуры белка по принципу матричного синтеза Лизосомы Представляет собой окруженный одинарной мембраной пузырек диаметром 0,2-0,8 мкм, имеет овальную форму. Содержит набор пищеварительных ферментов, синтезированных на рибосомах. Образуется в комплексе Гольджи. Прочная мембрана лизосом препятствует проникновению ферментов в цитоплазму. Входит в состав единой мембранной системы клетки . Пищеварительная - обеспечивает переваривание органических веществ, попавших в клетку при фагоцитозе и пиноцитозе . При голодании лизосомы могут участвовать в растворении органоидов, клеток и частей организма (утрата хвоста у головастика) - автолизе Митохондрии Двухмембранные органоиды. Наружная мембрана гладкая, а внутренняя образует многочисленные складки и выросты - кристы. Внутри митохондрия заполнена бесструктурным матриксом. В матриксе содержатся молекулы ДНК, РНК, рибосомы. Митохондрии имеют разнообразную форму: округлые, овальные, цилиндрические и палочковидные тельца • Энергетический и дыхательный центр клеток. • Освобождение энергии в процессе дыхания. • «Запасание» энергии в виде молекул АТФ. Источником энергии являются органические вещества, окисляющиеся под действием ферментов до СОг и Н20 Клеточный центр - характерен для клеток животных и низших растении Органоид немембранного строения, состоящий из двух центриолей - цилиндрической формы, расположенных перпендикулярно друг другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована из 9 пар микротрубочек. Участвуют в делении клеток животных и низших растений, образуя веретено деления Аппарат (комплекс) Гольджи Система уплощенных цистерн (трубочек, полостей), ограниченных двойными мембранами, образующих по краям пузырьки (диктиосомы). В растительных клетках цистерны способны расширяться и превращаться в крупные вакуоли. Входит в единую мембранную систему клетки • Участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки. • Вещества упаковываются в пузырьки. • В растениях - участвуют в построении клеточной стенки. . Формирует лизосомы Органоиды движения Микротрубочки - длинные тонкие полые цилиндры, диаметром 25 нм. Стенки микротрубочек состоят из белков • Опорная - образуют внутренний каркас, помогающий клеткам сохранять форму. • Двигательная - входят в состав ресничек и жгутиков Микронити - тонкие структуры, состоящие из тысяч молекул белка, соединенных друг с другом • Образуют опорно-двигательную систему, называемую цитоскелетом. • Способствуют току цитоплазмы в клетках Реснички - многочисленные цитоплазматиче-ские выросты на поверхности мембраны - образованы микротрубочками, покрытыми мембраной • Обеспечивают передвижение некоторых одноклеточных организмов и ток жидкости в организмах, удаление частичек пыли (дыхательный реснитчатый эпителий) Жгутики - единичные выросты на поверхности клетки. Реснички и жгутики имеют общую основную структуру: девять пар микротрубочек, расположенных кольцом, две одиночные микротрубочки в центре и базальное тельце в основании Служат для движения одноклеточным ор­ганизмам, сперматозоидам,зооспорам Клеточные включения Непостоянные структуры цитоплазмы. Плотные включения в виде гранул Содержат запасные питательные вещества (крахмал, жиры, белки, сахар) Органоиды, характерные только для растительных клеток Пластиды-хлоропласты Содержимое пластид называют стромой. Наружная мембрана гладкая, внутренняя образует пластинчатые впячивания - тилакоиды. Большая часть их укладывается в виде стопки монет и образует граны. В мембранах гран находится хлорофилл, придающий зеленую окраску и обеспечивающий протекание световой фазы светосинтеза Пластиды - лейкопласты Округлые, бесцветные органоиды, внутренняя мембрана образует 2-3 выроста. На свету преобразовываются в хлоропласты Служат местом отложения запасных питательных веществ, чаще всего крахмала Пластиды - хромопласты Двухмембранные шарообразные органоиды, шаровидной формы. Содержат пигменты - каротиноиды, окраска желтая, красная, оранжевая Придают лепесткам цветков, плодам и прицветным листьям окраску, привлекают насекомых-опылителей Клеточная оболочка (стенка) Состоит из целлюлозы, имеет поры. Имеется в клетках грибов, состоит из хитина Защищает клетку от внешних воздействий, придает прочность, является скелетом растения Вакуоль, характерна только для растительных клеток Мембранная полость, заполненная клеточным соком. Вакуоль является производной эндо-плазматической сети. Клеточный сок является водным раствором органических веществ: органических кислот, сахара, солей, белков, дубильных веществ, алкалоидов, пигментов и т. д. • регуляция водно-солевого обмена; • поддержание тургорного давления; • накопление продуктов обмена веществ и запасных веществ; • выведение из обмена токсичных веществ. Билет №22. Система классификации живых организмов. В настоящее время органический мир Земли насчитывает около 1,5 млн видов животных, 0,5 млн видов растений, около 10 млн микроорганизмов. Изучить такое многообразие организмов невозможно без их систематизации и классификации. Большой вклад в создание систематики живых организмов внес шведский натуралист Карл Линней (1707–1778). В основу классификации организмов он положил принцип иерархии, или соподчиненности, а за наименьшую систематическую единицу принял вид. Для названия вида была предложена бинарная номенклатура, согласно которой каждый организм идентифицировался (назывался) по его роду и виду. Названия систематических таксонов было предложено давать на латинском языке. Так, например, кошка домашняя имеет систематическое название Felis domestica. Основы линнеевской систематики сохранились до настоящего времени. Современная классификация отражает эволюционные взаимоотношения и родственные связи между организмами. Принцип иерархии сохраняется. Вид – это совокупность особей, сходных по строению, имеющих одинаковый набор хромосом и общее происхождение, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к сходным условиям обитания и занимающих определенный ареал. В настоящее время в систематике используют девять основных систематических категорий: империя, надцарство, царство, тип, класс, отряд, семейство, род, вид (схема 1, таблица 4, рис. 57). Схема По наличию оформленного ядра все клеточные организмы делятся на две группы: прокариоты и эукариоты. Прокариоты (безъядерные организмы) – примитивные организмы, не имеющие четко оформленного ядра. В таких клетках выделяется лишь ядерная зона, содержащая молекулу ДНК. Кроме того, в клетках прокариот отсутствуют многие органеллы. У них имеются только наружная клеточная мембрана и рибосомы. К прокариотам относятся бактерии. Эукариоты – истинно ядерные организмы, имеют четко оформленное ядро и все основные структурные компоненты клетки. К ним относятся растения, животные, грибы. Примеры классификации организмов Кроме организмов, имеющих клеточное строение, существуют и неклеточные формы жизни – вирусы и бактериофаги. Эти формы жизни представляют собой как бы переходную группу между живой и неживой природой. Многообразие органического мира. Принципы классификации живых организмов Мир живых существ насчитывает не менее 2 млн. видов. Все это многообразие организмов изучает систематика. Долгое время, со времен Аристотеля, господствовало традиционное разделение живого на два царства – животных и растения. В настоящее время принято подразделять мир живых существ на два надцарства: безъядерные или прокариоты (Procaryota), и ядерные, или эукариоты (Eucaryota). Первые не имеют оформленного ядра в клетках, а последние обладают ядром. Прокариоты обладают широким спектром типов питания и метаболизма при изобилии переходных форм. Среди прокариот выделяют царства архебактерий (Archaebacteria) и собственно бактерий (Eubacteria). Эубактерии имеют типичное для прокариот строение. Архебактерии открыты относительно недавно – в 1977 году. Они являются обитателями экстремальных условий (горячие источники и др.). Архебактерии отличаются от бактерий составом клеточной стенки – в ее состав входит вместо муреина другой пептидогликан – псевдомуреин. У некоторых архебактерий (галобактерии, ацидофильно-термофильных бактерий, метанообразующих бактерий) построена из белка. Другое уникальное свойство архебактерий касается состава их мембранных липидов. У них не найдены обычные для эубактерий эфиры глицерина и жирных кислот, но присутствуют эфиры, образованные путем конденсации глицерина с терпеновыми спиртами. В результате образуются однослойные (а не двухслойные) липидные мембраны. Существенные отличия выявлены у архебактерий в строении генома, аппаратов репликации, транскрипции и трансляции. Эукариот чаще всего подразделяют на три царства: растений (Vegetabilia, или Plantae), животных (Animalia, или Zoa) и грибов (Mycetalia, Fungi). Животные и грибы относятся к гетеротрофным организмам, питающимся готовыми органическими веществами, но первые из них преимущественно питаются другими организмами или их остатками, а грибы впитывают растворенные органические вещества. Большинство же растений – автотрофы, создающие органические вещества в процессе фотосинтеза. Однако различия по типу питания между указанными царствами относительны и имеются переходные формы, особенно многочисленные среди низших форм. Это дало основание некоторым ученым вслед за Геккелем (XIX в.) выделить дополнительно еще одно царство среди эукариот – протистов (Protista), к которым относят одноклеточных животных, водоросли и низшие группы грибов. Но выделение царства протистов создает много сложных проблем в систематике и вызывает возражения большинства ученых. Доклеточные формы живого – вирусы, иногда выделяют в империю Noncellulata, противопоставляя их империи клеточных (Cellulata). Но по мнению многих ученых вирусы – не настоящие организмы, так как не способны к самостоятельному обмену веществ и могут осуществлять самовоспроизведение только при участии клеток хозяина. Вирусы – неклеточные формы жизни, способные проникать в живые клетки и размножаться только внутри этих клеток. Подобно всем другим организмам вирусы обладают собственным генетическим аппаратом, который кодирует синтез вирусных частиц из биохимических предшественников, находящихся в клетке – хозяине; при этом используются биосинтетические и энергетические системы этой клетки. Вирусы существуют в двух формах: покоящейся, или внеклеточной (вирусные частицы, или вирионы), и репродуцирующейся, или внутриклеточной. Простые вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки – капсида и имеют палочковидную, нитевидную или сферическую форму. Более сложные вирусы кроме нуклеиновой кислоты и белков могут содержать липопротеидную мембрану, углеводы и неструктурные белки – ферменты. На основе сравнительного изучения живых организмов из разных царств выявлены их основные особенности. Зеленые растения обладают голофитным способом питания (питание без захвата твердых пищевых частиц – посредством транспорта растворенных веществ через поверхностные структуры клетки), животным свойственен особый – анимальный или голозойный способ питания путем заглатывания пищевых частиц. Кроме того, некоторые животные обладают, подобно грибам, сапрофитным способом питания. К ним относятся некоторые паразитические и примитивные свободноживущие формы, всасывающие через покровы растворенные органические вещества. Морфологически клетки животных отличаются от таковых у растений и грибов отсутствием твердой (целлюлозной или хитиноидной) оболочки. Животным свойственны активный метаболизм, ограниченный рост тела и сложное строение у высших форм, обладающих различными системами органов, такими как двигательная, пищеварительная, выделительная, кровеносная, дыхательная, половая, нервная. Автотрофные организмы (зеленые растения) являются продуцентами органического вещества, а животные – основные консументы, или потребители, органических веществ. Наряду с грибами и микроорганизмами животные могут выполнять и роль редуцентов, осуществляя минерализацию органических веществ. Автотрофы обогащают атмосферу кислородом, необходимым для дыхания большинства живых организмов, гетеротрофы выделяют в процессе дыхания углекислый газ, используемый растениями для фотосинтеза. Таким образом, растения связывают и накапливают солнечную энергию в форме органического вещества, а животные ее потребляют. Такое взаимодействие автотрофных и гетеротрофных организмов в биосфере – результат их сопряженной эволюции. Велика роль животных, как и растений, в накоплении и концентрации минеральных веществ. Так, образование у животных минерального скелета приводит при их отмирании к образованию осадочных пород: известняков, сланцев и др. ^ Принципы классификации живых организмов Классификация – распределение всего множества живых организмов по определенной системе иерархически соподчиненных групп – таксонов (классы, семейства, роды, виды и др.). Описанием упорядоченных (классифицированных) биологических объектов и построением их систем, занимается наука систематика. Опираясь на данные всех разделов биологии, особенно на эволюционное учение, систематика служит базой для многих биологических наук. Особое значение систематики заключается в создании возможности ориентирования во множестве существующих видов организмов. Попытки классификации организмов известны с древности Аристотель, Теофраст), однако основы систематики как науки заложены в работах Дж. Рея (1686-1704) и особенно Линнея (1735 и позже).   От Аристотеля до Линнея классификации были искусственными, т.е. объединяли организмы в группы по сходным произвольно выбранным признакам, и не придавали значения их родственным связям. Например, Аристотель разделял животных на ползающих, бегающих, плавающих, лазающих и т.д. Естественная, или филогенетическая, классификация учитывает совокупность признаков, присущих классифицируемым живым объектам, что позволяет их сближать и противопоставлять друг другу; она отражает исторически сложившиеся закономерные связи между ними. Такая классификация позволяет успешно ориентироваться в многообразии органического мира, служит важным источником информации, обладает высокой практической и прогностической ценностью. Естественная систематика появилась с появлением теории эволюции Дарвина. Основа естественной систематики – историческая общность, организмы, имеющие филогенетическое родство попадают в одну группу, далекие – в разные. Бывают полезны и имеющие вспомогательное практическое значение искусственные классификации объектов, группируемых по одному или немногим намеренно выбранным признакам или хозяйственным особенностям (например, лекарственные растения, пушные звери, анаэробные бактерии и др.). Искусственные систематики используются в паразитологии: например, экто- и эндопаразиты. Организмы могут принадлежать к различным систематическим группам – амеба дизентерийная, плазмодий малярийный, различные гельминты, относятся к эндопаразитам. Таким образом, искусственная систаматика на учитывает генетического родства. Основным, наиболее распространенным методом систематики является сравнительно – морфологический. Кроме того, используются палеонтологические данные. Вместе с тем, в систематике используют и новые методы, например электронной микроскопии; изучение тонкого строения хромосом привело к развитию кариосистематики. С середины 20 в. в систематике используется иммунологические и биохимические данные (хемосистематика или хемотаксономия). Перспективным направлением является геносистематика, основанная на изучении структуры ДНК. Можно изучать строение одного и тогоже гена у разных организмов и определять степень родства (например, цитохром с или гены рРНК). Все это позволяет дополнить систематическую характеристику и выяснить взаимоотношения групп. Единство и стабильность научных названий животных, растений, грибов и микроорганизмов обеспечивается биологической номенклатурой. Для одного и того же таксона установлено только одно название. Современная номенклатура берет начало от классических работ К. Линнея (середина 18 в.), впервые применившего бинарные названия для всех известных ему видов. Вид – основная структурная единица в системе живых организмов, качественный этап их эволюции. Вследствие этого вид – основная таксономическая категория в биологической систематике. Вид – это совокупность особей, обладающих общими морфологическими признаками и объединенных возможностью скрещивания друг с другом с образованием плодовитого потомства, формирующих систему популяций, которые образуют общий ареал; в природных условиях виды обычно отделены друг от друга и представляют генетически устойчивые системы. Каждому виду присваивается латинское название, состоящее из двух слов. Первое слово – существительное есть название рода, в который объединена группа близких видов, второе – обычно прилагательное – представляет собой название вида. Например, аскарида человеческая Ascaris lumbricoides, а близкородственный вид, относящийся к тому же роду аскарида свиная называется Ascaris suum. Такие двойные названия очень удобны, так как сразу указывают родовую принадлежность данного вида. Близкородственные роды объединяются в семейства, семейства – в отряды, отряды – в классы. Одной из высших таксономических категорий является тип. Тип объединяет родственные классы. Часто тип подразделяют на более высшие чем классы таксоны – подтипы. Все организмы, относящиеся к одному типу, характеризуются единым планом строения. Очень часто используются «промежуточные» таксоны: подтипы, подклассы, надотряды, подотряды и т.д., объединяющие в пределах данного таксона группы более низкого ранга. Например, классы в пределах типа могут быть сформированы в несколько подтипов. Билет 23. Химический состав клетки: Каждая клетка содержит множество химических элементов, участвующих в различных химических реакциях. Химические процессы, протекающие в клетке — одно из основных условий её жизни, развития и функционирования. Условно все элементы клетки можно разделить на две группы. Макроэлементы и микроэлементы. К макроэлементам относятся кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %),хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %). К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк. Нуклеиновые кислоты: Нуклеи́новая кисло́та (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. ДНК (дезоксирибонуклеиновая кислота). Сахар — дезоксирибоза, азотистые основания: гуанин (Г), аденин (А), тимин (Т) и цитозин (Ц). РНК (рибонуклеиновая кислота). Сахар — рибоза, азотистые основания: гуанин (Г), аденин (А), урацил (У) и цитозин (Ц). Структура полинуклеотидной цепочки аналогична таковой в ДНК. Из-за особенностей рибозы молекулы РНК часто имеют различные вторичные и третичные структуры, образуя комплементарные участки между разными цепями. АТФ: Аденозинтрифосфа́т (сокр. АТФ, англ. АТР) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ был открыт в 1929 году Карлом Ломанном, а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке. Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения. Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии. В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) н высвобождается порция энергии: АДФ также может подвергаться дальнейшему гидролизу с отщеплением еще одной фосфатной группы и выделением второй порции энергии; при этом АДФ преобразуется в аденозин-монофосфат (АМФ), который далее не гидролизуется: Билет 24. Уровни организации живой природы. Методы ее изучения. Молекулярный. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др. Клеточный. Клетка - структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии. Организменный. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии - от момента зарождения до прекращения существования - как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций. Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция - надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования - процесс микроэволгоции. Биогеоценотический. Биогеоценоз - совокупность организмов разных видов 'и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества. Биосферный. Биосфера - совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.   Билет № 25. Химический состав клетки. Углеводы. Липиды Химический состав клетки Вещества клетки делят на неорганические и органические. К неорганическим веществам относятся вода и минеральные соли. Органические вещества делятся на простые (аминокислоты, глюкоза, жирные кислоты) и сложные (белки, полисахариды, нуклеиновые кислоты, липиды). Наиболее важное значение имеют белки, жиры, углеводы, нуклеиновые кислоты. Углеводы Углеводы — органические вещества, состоящие из углерода, водорода и кислорода. Наиболее простые из них моносахариды — гексоза, фруктоза, глюкоза (содержатся в фруктах, меде), галактоза (в молоке) и полисахариды — состоящие из нескольких простых углеводов. Сюда относятся крахмал, гликоген. Также из более сложных углеводов наряду с полисахаридами существуют дисахариды: (сахароза, мальтоза или солодовый сахар). Функции: · Энергетическая. · Запасное питательное вещество. · Строительная (оболочка растительной клетки). · Компоненты ДНК, РНК, АТФ. Липиды Липиды — органические нерастворимые в воде жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта, жирных кислот, сложные — из спирта, высокомолекулярных жирных кислот, возможны остатки фосфорной кислоты, углеводов, азотистых оснований и др. Строение липидов зависит в первую очередь от пути их биосинтеза. Функции: · Строительная - образует билипидный слой всех мембранных. · Энергетическая. · Терморегуляторная. · Защитная. · Гормональная (кортикостероиды, половые гормоны). · Компоненты витаминов D,E. · Источник воды в организме. · Запасное питательное вещество Билет № 26. Химический состав белки. Белки. Биологические функции белков. Белки́ (протеи́ны, полипепти́ды) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются пост трансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс. Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК. Так, белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле. Белки — важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все необходимые аминокислоты и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются для биосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии. Определение аминокислотной последовательности первого белка — инсулина — методом секвенирования белков принеслоФредерику Сенгеру Нобелевскую премию по химии в 1958 году. Первые трёхмерные структуры белков гемоглобина имиоглобина были получены методом дифракции рентгеновских лучей, соответственно, Максом Перуцем и Джоном Кендрю в конце 1950-х годов, за что в 1962 году они получили Нобелевскую премию по химии. Каталитическая функция.К 1995 г. было идентифицировано более 3400 ферментов. Большинство известных в настоящее время ферментов, называемых биологическими катализаторами, является белками. Эта функция белков, хотя и не оказалась уникальной, определяет скорость химических реакций в биологических системах. Транспортная функция.Дыхательная функция крови, в частности перенос кислорода, осуществляется молекулами гемоглобина – белка эритроцитов. В транспорте липидов принимают участие альбумины сыворотки крови. Ряд других сывороточных белков образует комплексы с жирами, медью, железом, тироксином, витамином А и другими соединениями, обеспечивая их доставку в соответствующие органы-мишени. Защитная функция.Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-антител в ответ на поступление в организм бактерий, токсинов, вирусов или чужеродных белков. Высокая специфичностьвзаимодействия антител с антигенами (чужеродными веществами) по типу белок. Белковое взаимодействие способствует узнаванию и нейтрализации биологического действия антигенов. Защитная функция белков проявляется и в способности ряда белков плазмы крови, в частности фибриногена, к свертыванию. В результате свертывания фибриногена образуется сгусток крови, предохраняющий от потери крови при ранениях. Сократительная функция.В акте мышечного сокращения и расслабления участвует множество белковых веществ. Однако главную роль в этих жизненно важных процессах играют актин и миозин – специфические белки мышечной ткани. Сократительная функция присуща не только мышечным белкам, но и белкам цитоскелета, что обеспечивает тончайшие процессы жизнедеятельности клеток (расхождение хромосом в процессе митоза). Структурная функция.Белки, выполняющие структурную (опорную) функцию, занимают по количеству первое место среди других белков тела человека. Среди них важнейшую роль играют фибриллярные белки, в частности коллаген в соединительной ткани, кератин в волосах, ногтях, коже, эластин в сосудистой стенке и др. Большое значение имеют комплексы белков с углеводами в формировании ряда секретов: мукоидов, муцина и т.д. В комплексе с липидами (в частности, с фосфолипидами) белки участвуют в образовании мембран клеток. Гормональная функция.Обмен веществ в организме регулируется разнообразными механизмами. В этой регуляции важное место занимают гормоны, синтезируемые не только в железах внутренней секреции, но и во многих других клетках организма (см. далее). Ряд гормонов представлен белками или полипептидами, например гормоны гипофиза, поджелудочной железы и др. Некоторые гормоны являются производными аминокислот. Питательная (резервная) функция.Эту функцию выполняют так называемые резервные белки, являющиеся источниками питания дляплода, например белки яйца (овальбумины). Основной белок молока (казеин) также выполняет главным образом питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма. Можно назвать еще некоторые другие жизненно важные функции белков. Это, в частности, экспрессия генетической информации, генерирование и передача нервных импульсов, способность поддерживать онкотическое давление в клетках и крови, буферные свойства, поддерживающие физиологическое значение рН внутренней среды, и др.   МИКРО И МАКРО ЭЛЕМЕНТЫ Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов. Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды. Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии. Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевины,гуанина или мочевой кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления. Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях. Фосфор — входит в состав АТФ, других нуклеотидов и нуклеиновых кислот (в виде остатков фосфорной кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов). Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем. Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза). Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных. Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции (в том числе в работе почек у человека) и создании буферной системы крови. Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы. Содержится в межклеточных веществах. Хлор — поддерживает электро нейтральность клетки. Цинк — входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина Медь — входит в состав окислительных ферментов, участвующих в синтезе цитохромов. Селен - участвует в регуляторных процессах организма.  
Билет №27. Особенности химического состава клетки. Вода. Минеральные соли.

 

В клетке встречается около 70 химических элементов Периодической системы Д. И. Менделеева, однако содержание этих элементов существенно отличается от их концентраций в окружающей среде, что доказывает единство органического мира. Химические элементы, имеющиеся в клетке, делят на три большие группы: макроэлементы, мезоэлементы (олигоэлементы) и микроэлементы. Содержаниемакроэлементов составляет около 98 % массы клетки. К ним относятся углерод, кислород, водород и азот, входящие в состав основных органических веществ. Мезоэлементы — это сера, фосфор, калий, кальций, натрий, железо, магний, хлор, составляющие в сумме около 1,9 % массы клетки. Сера и фосфор являются компонентами важнейших органических соединений. Химические элементы, концентрация которых в клетке около 0,1 %, относятся к микроэлементам. Это цинк, йод, медь, марганец, фтор, кобальт и др. Вещества клетки делят на неорганические и органические. К неорганическим веществам относятся вода и минеральные соли. Благодаря своим физико-химическим свойствам вода в клетке является растворителем, средой для протекания реакций, исходным веществом и продуктом химических реакций, выполняет транспортную и терморегуляторные функции, придает клетке упругость, обеспечивает ту prop растительной клетки. Органические вещества клетки представлены углеводами, липидами, белками, нуклеиновыми кислотами, АТФ, витаминами и гормонами.

 

Содержание химических элементов в клетке.

Минеральные соли в клетке могут находиться в растворенном или не растворенном состояниях. Растворимые соли диссоциируют на ионы. Наиболее важными катионами являются калий и натрий, облегчающие перенос веществ через мембрану и участвующие в возникновении и проведении нервного импульса; кальций, который принимает участие в процессах сокращения мышечных волокон и свертывании крови, магний, входящий в состав хлорофилла, и железо, входящее в состав ряда белков, в том числе гемоглобина. Цинк входит в состав молекулы гормона поджелудочной железы — инсулина, медь требуется для процессов фотосинтеза и дыхания. Важнейшими анионами являются фосфат-анион, входящий в состав АТФ и нуклеиновых кислот, и остаток угольной кислоты, смягчающий колебания рН среды. Недостаток кальция и фосфора приводит к рахиту, нехватка железа — к анемии.



Вода – одно из самых распространенных веществ на Земле. Она покрывает большую часть земной поверхности. Почти все живые существа состоят в основном из воды. У человека содержание воды в различных органах и тканях варьирует от 20 % в костной ткани, до 85 % в головном мозге. Около 2/3 массы человека составляет вода, в организме медузы до 95 % воды, даже в сухих семенах растений вода составляет 10–12 %. Вода обладает некоторыми уникальными свойствами. Свойства эти настолько важны для живых организмов, что нельзя представить жизнь без этого соединения водорода и кислорода.
Уникальные свойства воды определяются структурой ее молекул. В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода.
Молекула воды полярна. Положительные заряды сосредоточены у атомов водорода, так как кислород электроотрицательнее водорода.
Помимо воды, в числе неорганических веществ клетки нужно назвать соли, представляющие собой ионные соединения. Они образованы катионами калия, натрия, магния и иных металлов и анионами соляной, угольной, серной, фосфорной кислот. Соли играют очень важную роль: создают среду, ускоряют реакции, способствуют выведению веществ и т. д.
Есть элементы, содержание которых в клетке очень мало. Это: сера, хлор, калий, магний, натрий, кальций и железо. Все остальные элементы содержатся в клетках в количестве ничтожно малом, но при недостатке этих микроэлементов возникают серьезные нарушения обмена веществ. Все эти химические элементы входят и в состав неживой природы. Таким образом, между химическим составом живых организмов и неживой природой существует принципиальное единство.
Роль химических элементов (кальций, калий. МАГНИЙ, ЖЕЛЕЗО, ЙОД, и др.

 




Дата добавления: 2014-12-15; просмотров: 113 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав