Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Деловая беседа.

Читайте также:
  1. Беседа. Методы опроса. Обобщение независимых характеристик. Анализ продуктов деятельности. Тестирование. Социометрия.
  2. Вводная беседа.
  3. Выделяют три основных вида направленности личности: личная, коллективистическая и деловая.
  4. Деловая беседа
  5. ДЕЛОВАЯ БЕСЕДА
  6. Деловая беседа по телефону
  7. Деловая игра к теме 15
  8. Деловая ситуация 1
  9. Деловая ситуация 3

Рабочей станцией называется совокупность аппаратных и программных средств, предназначенных для решения профессиональных задач. Это специализированный высокопроизводительный компьютер для тех, кому необходима надежная и производительная система, гарантирующая стабильную и эффективную работу приложений. Использование рабочих станций позволяет вывести ваше предприятие на новый профессиональный уровень вне зависимости от того, в какой области вы развиваетесь.

Рабочие станции решают широкий спектр задач:

§ Инженерно-технические задачи – 3D-проектирование и конструирование, расчетные работы.

§ Профессиональная работа с трехмерной графикой – визуализация, 3D-моделирование, мультипликация, спецэффекты.

§ Цифровая обработка фото и видео материала - верстка, монтаж, дизайн.

§ Работа с большими объемами данных – статистика, аналитика, прогнозирование.

Основные приемущества:

§ Эффективность

Решения, использующие последние технологии, позволяют рабочим станциям более эффективно справиться с высокими вычислительными нагрузками. Рабочие станции адаптированы на решение профессиональных задач за счет оптимизации как аппаратной части, так и драйверов.

§ Надежность

Повышенная надежность достигается за счет использования только высококачественной компонентной базы, длительному стресс-тестированию на этапе разработки и тотальному контролю качества при производстве изделия.

§ Специализация

Отдельным сегментом в линейке рабочих станций являются графические станции, оснащаемые профессиональными видеоадаптерами, созданными специально для решения профессиональных задач, связанных со сложной визуализацией, конструированием и 3D-моделированием, разработкой и производством, созданием медиа контента и научной деятельностью.

§ Адаптация к программному обеспечению

Графические станции проходят тестирование и сертифицирование на совместимость и эффективную работу с приложениями от ведущих разработчиков профессионального профильного программного обеспечения, таких как Catia и SolidWorks от Dassault Systemes, AutoCAD и Inventor от Autodesk, Компас 3D от Аскон, ProEngineer от ProTechnologies, NX от Siemens PLM Software, с продуктами компаний ANSYS, Adobe и многих других.

§ Возможности расширения

Платформы рабочих станций предоставляют большую гибкость в модернизации. Большее количество слотов PCI и PCI-E дает возможность установки профильных плат расширения. Большее количество слотов памяти и возможность установки второго процессора в двухпроцессорных системах увеличивает диапазон выбора производительности.

Конечно, вышеприведенная классификация весьма условна, ибо мощный современный персональный компьютер, оснащенные проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как полноправная рабочая станция, и как многопользовательная микроЭВМ, и как хороший сервер, но по своим характеристикам почти не уступающий малым ЭВМ

1.3. Общие принципы построения современных ЭВМ

Основным принципом построения всех современных ЭВМ является про­граммное управление. В основе его лежит представление алгоритма решения любой задачи в виде программы вычислений. Стандартом для пост­роения практически всех ЭВМ стал способ, описанный Дж. фон Нейманом в 1945 г. при построении еще первых образцов ЭВМ. Суть его заключается в следующем.

Все вычисления, предписанные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управля­ющих слов-команд. Каждая команда содержит указания на конкретную вы­полняемую операцию, место нахождения операндов (адреса операндов) и ряд служеб­ных признаков. Операнды - переменные, значения которых участвуют в опе­рациях преобразования данных. Список (массив) всех переменных (входных данных, промежуточных значении и результатов вычислений) является еще одним неотъемлемым элементом любой программы.

Для доступа к программам, командам и операндам используются их ад­реса. В качестве адресов выступают номера ячеек памяти ЭВМ, предназна­ченных для хранения объектов. Различные типы объектов, размещенные в памяти ЭВМ, идентифицируются по контексту.

Последовательность битов в формате, имеющая определенный смысл, называется полем. Например, в каждой команде программы различают поле кода операций, поле адресов операндов. Применительно к числовой инфор­мации выделяют знаковые разряды, поле значащих разрядов чисел, старшие и младшие разряды.

Последовательность, состоящая из определенного принятого для дан­ной ЭВМ числа байтов, называется словом.

Рис. 1.1. Структурная схема ЭВМ первого и второго поколений

В любой ЭВМ имеются устройства ввода информации (УВв), с помо­щью которых пользователи вводят в ЭВМ программы решаемых задач и дан­ные к ним. Введенная информация полностью или частично сначала запоми­нается в оперативном запоминающем устройстве (ОЗУ), а затем переносится во внешнее запоминающее устройство (ВЗУ), предназначенное для длитель­ного хранения информации, где преобразуется в файл. При использовании файла в вычислительном процессе его содержимое переносится в ОЗУ. Затем программная информация команда за командой считывается в устройство управления (УУ).

Устройство управления предназначается для автоматического выполне­ния программ путем принудительной координации всех остальных устройств ЭВМ. Цепи сигналов управления показаны на рис. 1.1 штриховыми линия­ми. Вызываемые из ОЗУ команды дешифрируются устройством управления: определяются код операции, которую необходимо выполнить следующей, и адреса операндов, принимающих участие в данной операции.

В зависимости от количества используемых в команде операндов разли­чаются одно-, двух-, трех-, четырех- адресные и безадресные команды. В одноадресных командах указывается, где находится один из двух обрабатываемых операн­дов. Второй операнд должен быть помещен заранее в арифметическое уст­ройство.

Двухадресные команды содержат указания о двух операндах, размещае­мых в памяти (или в регистрах и памяти). После выполнения команды в один из этих адресов засылается результат, а находившийся там операнд теряется.

В трехадресных командах обычно два адреса указывают, где находятся исходные операнды, а третий - куда необходимо поместить результат.

В безадресных командах обычно обрабатывается один операнд, который до и после операции находится на одном из регистров арифметико-логичес­кого устройства (АЛУ). Кроме того, безадресные команды используются для выполнения служебных операций (запрет прерывания, выход из подпрограммы и др.).

Все команды программы выполняются последовательно, команда за ко­мандой, в том порядке, как они записаны в памяти ЭВМ (естественный поря­док следования команд) или если команда четырех- адресная (характерно для первых ЭВМ) адрес следующей команды находится в поле четвертого операнда. Этот порядок характерен для линейных программ, т.е. программ, не содержащих разветвлений. Для организации ветвлений ис­пользуются команды, нарушающие естественный порядок следования команд. Отдельные признаки результатов r (r = 0, r < 0, r > 0 и др.) устройство управ­ления использует для изменения порядка выполнения команд программы.

АЛУ выполняет арифметические и логические операции над данными. Основной частью АЛУ является операционный автомат, в состав которого входят сумматоры, счетчики, регистры, логические преобразователи и др. Оно каждый раз перенастраивается на выполнение очередной операции. Резуль­таты выполнения отдельных операций сохраняются для последующего ис­пользования на одном из регистров АЛУ или записываются в память. Ре­зультаты, полученные после выполнения всей программы вычислений, пере­даются на устройства вывода (УВыв) информации. В качестве УВыв могут использоваться экран дисплея, принтер, графопостроитель и др.

Современные ЭВМ имеют достаточно развитые системы машинных опе­раций. Например, ЭВМ типа IBM PC имеют около 200 различных операций (170 - 300 в зависимости от типа микропроцессора). Любая операция в ЭВМ выполняется по определенной микропрограмме, реализуемой в схемах АЛУ со­ответствующей последовательностью сигналов управления (микрокоманд). Каж­дая отдельная микрокоманда - это простейшее элементарное преобразование дан­ных типа алгебраического сложения, сдвига, перезаписи информации и т.п.

Уже в первых ЭВМ для увеличения их производительности широко при­менялось совмещение операций. При этом последовательные фазы выполне­ния отдельных команд программы (формирование адресов операндов, вы­борка операндов, выполнение операции, отсылка результата) выполнялись отдельными функциональными блоками. В своей работе они образовывали конвейер, а их параллельная работа позволяла обрабатывать различные фазы целого блока команд. Этот принцип получил дальнейшее развитие в ЭВМ следующих поколений. Но все же первые ЭВМ имели очень сильную централизацию управления, единые стандарты форматов команд и данных, «жесткое» построение циклов выполнения отдельных операций, что во многом объясняется ограниченными возможностями используемой в них элементной базы. Центральное УУ обслуживало не только вычислительные операции, но и операции ввода-вывода, пересылок данных между ЗУ и др. Все это позволяло в какой-то степени упростить аппаратуру ЭВМ, но сильно сдерживало рост их производительности.

В ЭВМ третьего поколения произошло усложнение структуры за счет разделения процессов ввода-вывода информации и ее обработки (рис. 1.2).

Сильносвязанные устройства АЛУ и УУ получили название процессор, г.е. устройство, предназначенное для обработки данных. В схеме ЭВМ по­явились также дополнительные устройства, которые имели названия: процессоры ввода-вывода, устройства управления обменом информацией, кана­лы ввода-вывода (КВВ). Последнее название получило наибольшее распрос­транение применительно к большим ЭВМ. Здесь наметилась тенденция к децентрализации управления и параллельной работе отдельных устройств. что позволило резко повысить быстродействие ЭВМ в целом.

 

Рис. 1.2. Структурная схема ЭВМ третьего поколения

Среди каналов ввода-вывода выделяли мультиплексные каналы, способ­ные обслуживать большое количество медленно работающих устройств вво­да-вывода (УВВ). и селекторные каналы, обслуживающие в многоканаль­ных режимах скоростные внешние запоминающие устройства (ВЗУ).

В персональных ЭВМ, относящихся к ЭВМ четвертого поколения, про­изошло дальнейшее изменение структуры (рис. 1.3). Они унаследовали ее от мини-ЭВМ.

Рис. 1.3. Структурная схема ПЭВМ

Соединение всех устройств в единую машину обеспечивается с помо­щью общей шины, представляющей собой линии передачи данных, адресов, сигналов управления и питания. Единая система аппаратурных соединений значительно упростила структуру, сделав ее еще более децентрализованной. Все передачи данных по шине осуществляются под управлением сервисных программ.

Ядро ПЭВМ образуют процессор и основная память (ОП), состоящая из оперативной памяти и постоянного запоминающего устройства (ПЗУ). ПЗУ предназначается для постоянного хранения программ первоначального тестирования ПЭВМ (POST) и загрузки ОС. Подключение всех внешних устройств (ВнУ), дисплея, клавиатуры, внешних ЗУ и других обеспечивается через соответ­ствующие адаптеры - согласователи скоростей работы сопрягаемых устройств или контроллеры - специальные устройства управления периферийной ап­паратурой. Контроллеры в ПЭВМ играют роль каналов ввода-вывода. В ка­честве особых устройств следует выделить таймер - устройство измерения времени и контроллер прямого доступа к памяти (КПД) - устройство, обес­печивающее доступ к ОП, минуя процессор.

Децентрализация построения и управления вызвала к жизни такие эле­менты, которые являются общим стандартом структур современных ЭВМ:

модульность построения, магистральность, иерархия управления.

Модульность построения предполагает выделение в структуре ЭВМ достаточно автономных, функционально и конструктивно законченных устройств (процессор, модуль памяти, накопитель на жестком или гибком Mai-нитном диске).

Модульная конструкция ЭВМ делает ее открытой системой, способной к адаптации и совершенствованию. К ЭВМ можно подключать дополнитель­ные устройства, улучшая ее технические и экономические показатели. Появ­ляется возможность увеличения вычислительной мощности, улучшения струк­туры путем замены отдельных устройств на более совершенные, изменения и управления конфигурацией системы, приспособления ее к конкретным усло­виям применения в соответствии с требованиями пользователей.

В современных ЭВМ принцип децентрализации и параллельной работы распространен как на периферийные устройства, так и на сами ЭВМ (про­цессоры). Появились вычислительные системы, содержащие несколько вы­числителей (ЭВМ или процессоры), работающие согласованно и параллель­но. Внутри самой ЭВМ произошло еще более резкое разделение функций между средствами обработки. Появились отдельные специализированные процессоры, например сопроцессоры, выполняющие обработку чисел с пла­вающей точкой, матричные процессоры и др.

Все существующие типы ЭВМ выпускаются семействами, в которых различают старшие и младшие модели. Всегда имеется возможность замены более слабой модели на более мощную. Это обеспечивается информацион­ной, аппаратурной и программной совместимостью. Программная совмес­тимость в семействах устанавливается по принципу снизу-вверх, т.е. про­граммы, разработанные для ранних и младших моделей, могут обрабаты­ваться и на старших, но не обязательно наоборот.

Модульность структуры ЭВМ требует стандартизации и унификации оборудования, номенклатуры технических и программных средств, средств сопряжения - интерфейсов, конструктивных решений, унификации типовых элементов замены, элементной базы и нормативно-технической документа­ции. Все это способствует улучшению технических и эксплуатационных ха­рактеристик ЭВМ, росту технологичности их производства.

Децентрализация управления предполагает иерархическую организацию структуры ЭВМ. Централизованное управление осуществляет устройство управления главного, или центрального, процессора. Подключаемые к цент­ральному процессору модули (контроллеры и КВВ) могут, в свою очередь, использовать специальные шины или магистрали для обмена управляющи­ми сигналами, адресами и данными. Инициализация работы модулей обес­печивается по командам центральных устройств, после чего они продолжа­ют работу по собственным программам управления. Результаты выполнения требуемых операций представляются ими «вверх по иерархии» для правиль­ной координации всех работ.

По иерархическому принципу строится система памяти ЭВМ. Так, с точки зрения пользователя желательно иметь в ЭВМ оперативную память большой информационной емкости и высокого быстродействия. Од­нако одноуровневое построение памяти не позволяет одновременно удовлет­ворять этим двум противоречивым требованиям. Поэтому память современ­ных ЭВМ строится по многоуровневому, пирамидальному принципу.

В состав процессоров может входить сверхоперативное запоминающее устройство небольшой емкости, образованное несколькими десятками регис­тров с быстрым временем доступа (единицы нс). Здесь обычно хранятся дан­ные, непосредственно используемые в обработке.

Следующий уровень образует кэш-память. Она представляет собой буферное запоминающее устройство, предназначен­ное для хранения активных страниц объемом десятки и сотни Кбайтов. Вре­мя обращения к данным составляет 2-10 нс, при этом может использовать­ся ассоциативная выборка данных. Кэш-память, как более быстродействую­щая ЗУ, предназначается для ускорения выборки команд программы и обрабатываемых данных. Сами же программы пользователей и данные к ним размещаются в оперативном запоминающем устройстве (емкость - милли­оны машинных слов, время выборки 10-70 нс).

Часть машинных программ, обеспечивающих автоматическое управле­ние вычислениями и используемых наиболее часто, может размещаться в постоянном запоминающем устройстве (ПЗУ). На более низких уровнях иерар­хии находятся внешние запоминающие устройства на магнитных носителях: на жестких и гибких магнитных дисках, магнитных лентах, магнитоопти­ческих дисках и др. Их отличает более низкое быстродействие и очень боль­шая емкость.

Организация заблаговременного обмена информационными потоками между ЗУ различных уровней при децентрализованном управлении ими по­зволяет рассматривать иерархию памяти как единую абстрактную виртуальную память. Согласованная работа всех уровней обеспечива­ется под управлением программ операционной системы. Пользователь имеет возможность работать с памятью, намного превышающей емкость ОЗУ.

Децентрализация управления и структуры ЭВМ позволила перейти к более сложным многопрограммным (мультипрограммным) режимам. При этом в ЭВМ одновременно может обрабатываться несколько программ пользова­телей.

В ЭВМ, имеющих один процессор, многопрограммная обработка явля­ется кажущейся. Она предполагает параллельную работу отдельных устройств, задействованных в вычислениях по различным задачам пользователей. Например, компьютер может производить распечатку каких-либо докумен­тов и принимать сообщения, поступающие по каналам связи. Процессор при этом может производить обработку данных по третьей программе, а пользователь - вводить данные или программу для новой задачи, слушать музыку и т.п.

В ЭВМ иди вычислительных системах, имеющих несколько процессо­ров обработки, многопрограммная работа может быть более глубокой. Авто­матическое управление вычислениями предполагает усложнение структуры за счет включения в ее состав систем и блоков, разделяющих различные вы­числительные процессы друг от друга, исключающие возможность возник­новения взаимных помех и ошибок (системы прерываний и приоритетов, защиты памяти). Самостоятельного значения в вычислениях они не имеют, но являются необходимым элементом структуры для обеспечения этих вы­числений.

Как видно, полувековая история развития ЭВТ дала не очень широкий спектр основных структур ЭВМ. Все приведенные структуры не выходят за пределы классической структуры фон Неймана. Их объединяют следующие традиционные признаки [53]:

• ядро ЭВМ образует процессор - единственный вычислитель в струк­туре, дополненный каналами обмена информацией и памятью-

• линейная организация ячеек всех видов памяти фиксированного раз­мера;

• одноуровневая адреса11ия ячеек памяти, стирающая различия между всеми типами информации:

• внутренний машинный язык низкого уровня, при котором команды со­держат элементарные операции преобразования простых операндов;

• последовательное централизованное управление вычислениями;

• достаточно примитивные возможности устройств ввода-вывода.

Несмотря на все достигнутые успехи, классическая структура ЭВМ не обеспечивает возможностей дальнейшего увеличения производительности. Наметился кризис, обусловленный рядом существенных недостатков:

• плохо развитые средства обработки нечисловых данных (структуры, символы, предложения, графические образы, звук, очень большие мас­сивы данных и др.);

• несоответствие машинных операций операторам языков высокого уровня;

• примитивная организация памяти ЭВМ;

• низкая эффективность ЭВМ при решении задач, допускающих парал­лельную обработку и т.п.

Все эти недостатки приводят к чрезмерному усложнению комплекса про­граммных средств, используемого для подготовки и решения задач пользова­телей.

В ЭВМ будущих поколений, с использованием в них «встроенного искус­ственного интеллекта», предполагается дальнейшее усложнение структуры. В первую очередь это касается совершенствования процессов общения пользова­телей с ЭВМ (использование аудио-, видеоинформации, систем мультимедиа и др.), обеспечения доступа к базам данных и базам знаний, организации параллельных вычислений. Несомненно, что этому должны соответствовать новые параллельные структуры с новыми принципами их построения. В каче­стве примера укажем, что самая быстрая ЭВМ фирмы IBM в настоящее время обеспечивает быстродействие 600 MIPS (миллионов команд в секунду), самая же большая гиперкубическая система nCube дает быстродействие 123.103 MIPS. Расчеты показывают, что стоимость одной машинной операции в гиперсистеме примерно в тысячу раз меньше. Вероятно, подобными системами будут об­служиваться большие информационные хранилища.

 

Деловая беседа.

Деловая беседа – это целенаправленная, с заранее планируемым эффектом устная коммуникация, которая служит решению производственных проблем и предполагает выработку соответствующих решений. Значение деловой беседы трудно переоценить. Она является наиболее благоприятной и зачастую единственной возможностью убедить собеседника в обоснованности предлагаемой позиции.

Деловая беседа выполняет ряд очень важных функций. К их числу следует отнести:

− взаимное общение работников из одной деловой сферы;

− совместный поиск, выдвижение и оперативную разработку рабочих идей и замыслов;

− контроль и координирование уже начатых деловых мероприятий;

− поддержание деловых контактов;

− стимулирование деловой активности.

Основными этапами деловой беседы являются подготовительные мероприятия, начало беседы, информационная часть, аргументирование выдвигаемых предложений, принятые решения и завершение беседы.

Схема (рис. 2.1) дает общее представление не только об основных фазах деловой беседы, но и о тех областях знания, которые предопределяют достижения успеха.

Этап I. Подготовка к беседе. Чтобы добиться желаемого результата, к деловой беседе надо тщательно готовиться.

Для начала рекомендуется запомнить два «золотых правила»

1. Обеспечьте себе достаточно времени на подготовку!

2. Работайте по плану и методично!

Важным элементом подготовки к деловой беседе является предварительный анализ личности собеседника. Общее представление о структуре такого анализа дает схема анализа коммуникативного процесса.

Есть опыт разработки универсального подхода, модели планирования, которая может послужить рабочим планом при подготовке к проведению беседы.

Основные фазы деловой беседы.

 

Схема анализа коммуникативного процесса

ПЛАНИРОВАНИЕ

Модель планирования деловой беседы

Целью планирования является попытка смягчить, нейтрализовать влияние новых моментов, непредвиденных обстоятельств на ход беседы. Подготовка беседы позволяет предвидеть возможные неожиданные моменты, что снижает эффективность «выпадов» собеседника. Кроме того, приобретается навык быстрой и гибкой реакции на случай неожиданных оборотов.

Планирование беседы сводится к следующим действиям: составление и проверка прогноза деловой беседы, установление ее основных задач, поиски подходящих путей для решения этих задач, разработка плана по отдельным элементам беседы и т. д.

Система планирования важных деловых бесед включает:

а) стратегический план – пути и программу действий по достижению цели;

б) тактический план – перечень способов поэтапного достижения целей;

в) план сбора информации;

г) план систематизации и отбора рабочих материалов;

д) план изложения по времени (определяет рамки рабочего плана);

е) рабочий план (устанавливает структуру изложения и беседы в целом с учетом имеющегося времени);

ж) план приспособления к собеседникам и обстановке.

Специфика каждого вида деловой беседы предопределяет выбор необходимых планов и их разработку.

Этап II. Начало беседы. Максимальную трудность обычно представляет начало беседы, ибо нередко возникает своеобразный «внутренний тормоз». Как начать? С чего начинать? Какие фразы более всего подходят? Это весьма напоминает настройку инструментов перед концертом. И очень важно на первой фазе беседы осознать ее основные задачи: установить контакт с собеседником, создать благоприятную психологическую атмосферу, пробудить интерес к теме разговора.

Собеседники обычно наиболее внимательно слушают первые фразы беседы – часто из любопытства или ожидания чего-то нового. Именно первые два-три предложения создают внутреннее отношение к беседе, формируют впечатление о собеседнике.

Поэтому большой ошибкой являются такие способы начать разговор, как извинения и проявления смущения, либо агрессивные наскоки или любые проявления неуважения и пренебрежения к собеседнику («Извините, если я помешал…», «А у меня на этот счет другое мнение…», «Давайте быстренько рассмотрим этот вопрос…»). Психологически это лишает общение кислорода, и оно прекращается не начавшись.

Существует несколько эффективных способов начать деловую беседу. Вот некоторые из этих «правильных дебютов».

1. Метод снятия напряжения позволяет установить тесный контакт с другими. Для этого надо только задаться вопросом: что будет приятно моему собеседнику? И сразу найдется несколько теплых слов, добрая улыбка, заинтересованный взгляд, уместная шутка и др.

2. Метод «зацепки» позволяет сразу «взять быка за рога», т. е. крат­ко изложить проблему, высветив в ней наиболее яркие, интересные аспекты.

3. Метод прямого подхода означает отказ от «разминки» и каких-либо вступительных слов. Этот прием выглядит «холодным» и рациональным, так как сразу начинается обсуждение поставленных вопросов. Для кратковременных и не слишком важных деловых бесед он подходит более всего.

Психологически очень важно, чтобы начальная фаза беседы способствовала возникновению симпатии собеседников друг к другу. Поэтому необходимо соблюдать ряд условий: приятный внешний вид, обращение к собеседнику по имени и отчеству, проявление уважения и заинтересованности к личности друг друга, соответствующие сигналы тела (поза, мимика, жесты и пр.).

Деловая беседа должна обязательно строиться в форме диалога, для чего как можно чаще следует апеллировать к мнению и ответам собеседника.

Этап III. Передача информации. Цель этой части беседы заключается в решении следующих задач: сбор и передача запланированной информации, выявление целей и мотивов собеседника, проверка и анализ его позиций.




Дата добавления: 2014-12-19; просмотров: 36 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.019 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав