Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Лекция 1: История, предмет, цели системного анализа

Читайте также:
  1. II. Предмет, задачи физиологии растений
  2. III. Процедурные методы анализа
  3. OLAP-технологии анализа и прогнозирования деловой ситуации
  4. Аварии на коммунально-энергетических сетях(водоснабжение, канализация, газо-электро-теплоснабжение).
  5. Автоматизация анализа генераторных устройств.
  6. Амплитудная селекция
  7. Анализ влияния факторов на результаты работы предприятия на основе корреляционно-регрессионного анализа.
  8. Анализа ликвидности баланса.
  9. АНАЛИЗА УРОКА
  10. АНАЛИЗАТОР

N2 + 2O2 ® 2NO2: 8 есе жоғарылайды

Тотығу-тотықсыздану реакцияларын көрсетіңдер: H2SO4+Ca®CaSO4+SO2+ H2O

H2СO3 –тегі көміртегі атомы қандай гибридтенуге ұшырайды: sp2

Фарадей заңының формуласы

Анодта жүретін процесс- тотығу

Катодта жүретін процесс- тотықсыздану

Құрамында 68,4% Cr бар хром оксидінің формуласын көрсетіңдер: Cr2O3

13 г цинк құрамында 35 г күкірт қышқылы бар ерітіндімен әрекеттескенде неше грамм сутегі бөлінеді? 0,4

Қалыпты жағдайда 1 л газдың массасы 1,52 грамға тең. Газдың молярлық массасын есептеңдер: 34 г/моль

Қай элемент атомының массасы 2,66 10-26 кг-ға тең? оттегі

Қай қосылыста күкірттің массалық үлесі ең үлкен? K2S2O4

0,5 моль хлор молекуласында қанша атом бар? 3,01×1023

Ca(OH) 2 + CO2 = X + H2O

Х-затының молекулалық массасын есептеңдер: 100

4Fe(OH)2 + O2+ 2H2O = X

X –затының молекулалық массасын есептеңдер: 107

10 г Al-ді тұз қышқылымен өңдегенде неше көлем сутегі бөлінеді: 12,4

40 г CaCO3 қанша моль болады? 0,4

5 л аммиактың массасын есептеңдер: 3,8

12 грамм магний тұз қышқылымен әрекеттескенде бөлініп шығатын сутегінің көлемін есептеңдер: 11,2

-1s1 электрондық формула қай элемент атомына сәйкес келеді: H

5 л аммиактың массасын есептеңдер: 3,8

Fe3O4(қ) + CO(г) FeO(қ) + CO2(г) тура реакцияның жылдамдығының өрнегін құрастырыңдар: v =k[CO]

NaOH + HCl = X + H2O

Х-затының массасын анықтаңдар: 58,5

Na2SO4 ×10H2O – бұл қосылыстың молекулалық массасын есептеңдер: 322

100 г оттегінің қалыпты жағдайдағы көлемі қандай? 70 г

Лекция 1: История, предмет, цели системного анализа

Рассматриваются история развития и предмет системного анализа, системные ресурсы общества, предметная область системного анализа, системные процедуры и методы, системное мышление.

Цель лекции: введение в краткую историю, предмет и значение системного анализа как методологии, научной области, технологической дисциплины и принципа мышления.

Можно говорить о наступлении этапа научного, системно-междисциплинарного подхода к проблемам науки, образования, техники и технологии, этапа, концентрирующего внимание не только на вещественно-энергетических, но и на системно-междисциплинарных аспектах, построении и исследовании системно-информационной картины мира, о наступлении этапа системных парадигм.

Системный анализ, чьи основы являются достаточно древними, - все же сравнительно молодая наука (сравнима по возрасту, например, с кибернетикой). Хотя она и активно развивается, ее определяющие понятия и термины недостаточно формализованы (если это вообще возможно осуществить). Системный анализ применяется в любой предметной области, включая в себя как частные, так и общие методы и процедуры исследования.

Эта наука, как и любая другая, ставит своей целью исследование новых связей и отношений объектов и явлений. Но, тем не менее, основной проблемой нашей науки является исследование связей и отношений таким образом, чтобы изучаемые объекты стали бы более управляемыми, изучаемыми, а "вскрытый" в результате исследования механизм взаимодействия этих объектов - более применимым к другим объектам и явлениям. Задачи и принципы системного подхода не зависят от природы объектов и явлений.

При изложении основ анализа, синтеза и моделирования систем возможны два основных подхода: формальный и понятийно-содержательный. Формальный подход использует формальный математический аппарат различного уровня строгости и общности (от простых соотношений до операторов, функторов, категорий, алгебр). Понятийно-содержательный подход - концентрируется на основных понятиях, идеях, подходе, концепциях, возможностях, на основных методологических принципах, использует "полуформальное" введение в суть рассматриваемых идей и понятий. Многие идеи и принципы системного анализа, хотя и более точны, строги на формальном языке изложения, тем не менее, сохраняют свою силу, актуальность, возможность эффективного использования и на содержательном языке. Необходимо отметить, что часто один удачный понятный пример имеет большее значение для понимания этих принципов, чем строгие математические определения. Кроме того, фактор неопределенности в системном анализе ограничивает применимость строгих математических формулировок и выводов. Мы ниже будем придерживаться, в основном, содержательно-понятийного подхода, применяя там, где это будет признано необходимым, формальные определения и положения, хотя отчетливо осознаем, что для изложения основ науки, претендующей на роль методологической, необходима высокая степень формализации, вплоть до создания аксиом. Таким подходом мы хотим расширить и круг читателей, которым будет доступен и полезен этот курс лекций. Несмотря на содержательные формулировки и алгоритмические процедуры некоторых приводимых основных положений и фактов, они имеют в основе достаточно формальный фундамент.

Слово "система" (организм, строй, союз, целое, составленное из частей) возникло в Древней Греции около 2000 лет назад. Древние ученые (Аристотель, Демокрит, Платон и другие) рассматривали сложные тела, процессы и мифы мироздания как составленные из различных систем (например, атомов, метафор). Развитие астрономии (Коперник, Галилей, Ньютон и другие) позволило перейти к гелиоцентрической системе мира, к категориям типа "вещь и свойства", "целое и часть", "субстанция и атрибуты", "сходство и различие" и др. Далее развитие системного анализа происходит под влиянием различных философских воззрений, теорий о структуре познания и возможности предсказания (Бэкон, Гегель, Ламберт, Кант, Фихте и другие). В результате такого развития системный анализ выходит на позиции методологической науки. Естествоиспытатели XIX-XX вв. (Богданов, Берталанфи, Винер, Эшби, Цвикки и другие) не только актуализировали роль модельного мышления и моделей в естествознании, но и сформировали основные системообразующие принципы, принципы системности научного знания, "соединили" теорию открытых систем, философские принципы и достижения естествознания. Современное развитие теория систем, системный анализ получили под влиянием достижений как классических областей науки (математика, физика, химия, биология, история и др.), так и неклассических областей (синергетика, информатика, когнитология, теории нелинейной динамики и динамического хаоса, катастроф, нейроматематика, нейроинформатика и др.). Необходимо особо подчеркнуть влияние техники (с древнейших времен) и технологии (современности) на развитие системного анализа, в частности, на ее прикладную ветвь - системотехнику, на методологию проектирования сложных технических систем. Это влияние - взаимное: развитие техники и технологии обогащает системный анализ новыми методами, моделями, средами.

Эпоха зарождения основ системного анализа была характерна рассмотрением чаще всего систем физического или философского (гносеологического) происхождения. При этом постулат (Аристотеля): "Важность целого превыше важности его составляющих" сменился позже на новый постулат (Галилея): "Целое объясняется свойствами его составляющих".

Наибольший вклад в зарождение и развитие системного анализа, системного мышления внесли такие ученые, как Р. Декарт, Ф. Бэкон, И. Кант, И. Ньютон, Ф. Энгельс, А.И. Берг, А.А. Богданов, Н. Винер, Л. Берталанфи, Ч. Дарвин, И. Пригожин, Э. Эшби, А.А. Ляпунов, Н.Н. Моисеев и другие. Идеи системного анализа развивали также А. Аверьянов, Р. Акофф, В. Афанасьев, Р. Абдеев, И. Блауберг, Н. Белов, Л. Бриллюэн, Н. Бусленко, В. Волкова, Д. Гвишиани, В. Геодакян, К. Гэйн, Дж. ван Гиг, А. Денисов, Е. Дубровский, В. Завадский, Ю. Климонтович, Д. Колесников, Э. Квейд, В. Кузьмин, О. Ланге, Е. Луценко, В. Лекторский, В. Лефевр, Ю. Либих, А. Малиновский, М. Месарович, В. Могилевский, К. Негойце, Н. Овчинников, С. Оптнер, Дж. Патерсон, Ф. Перегудов, Д. Поспелов, А. Рапопорт, Л. Растригин, С. Родин, Л. Розенблют, В. Садовский, В. Сегал, В. Симанков, Б. Советов, В. Солодовников, Ф. Тарасенко, К. Тимирязев, А. Уемов, Ю. Черняк, Г. Хакен, Дж. Холдейн, Г. Шустер, А. Шилейко, Г. Щедровицкий, Э. Юдин, С. Яковлев, С. Янг и многие другие.

Предметная область - раздел науки, изучающий предметные аспекты системных процессов и системные аспекты предметных процессов и явлений. Это определение можно считать системным определением предметной области.

Системный анализ - совокупность понятий, методов, процедур и технологий для изучения, описания, реализации явлений и процессов различной природы и характера, междисциплинарных проблем; это совокупность общих законов, методов, приемов исследования таких систем.

Системный анализ - методология исследования сложных, часто не вполне определенных проблем теории и практики.

Строго говоря, различают несколько ветви науки, изучающей системы:

1. Системологию (теорию систем) которая изучает теоретические аспекты и использует теоретические методы (теория информации, теория вероятностей, теория игр и др.);

2. Системный анализ (методологию, теорию и практику исследования систем), который исследует методологические, а часто и практические аспекты и использует практические методы (математическая статистика, исследование операций, программирование и др.);

3. Системотехнику (практику и технологию проектирования и исследования систем).

Общим у всех этих ветвей является системный подход, системный принцип исследования - рассмотрение изучаемой совокупности не как простой суммы составляющих (линейно взаимодействующих объектов), а как совокупности нелинейных и многоуровневых взаимодействующих объектов.

Любую предметную область также можно определить как системную.

Пример. Информатика – наука, изучающая информационно-логические и алгоритмические аспекты системных процессов, системные аспекты информационных процессов. Это определение можно считать системным определением информатики.

Системный анализ тесно связан с синергетикой. Синергетика - междисциплинарная наука, исследующая общие идеи, методы и закономерности организации (изменения структуры, ее пространственно-временного усложнения) различных объектов и процессов, инварианты (неизменные сущности) этих процессов. "Синергический" в переводе означает "совместный, согласованно действующий". Это теория возникновения новых качественных свойств, структур на макроскопическом уровне.

Системный анализ тесно связан и с философией. Философия дает общие методы содержательного анализа, а системный анализ - общие методы формального, межпредметного анализа предметных областей, выявления и описания, изучения их системных инвариантов. Можно дать и философское определение системного анализа: системный анализ - это прикладная диалектика.

Системный анализ предоставляет к использованию в различных науках, системах следующие системные методы и процедуры:

1. абстрагирование и конкретизация;

2. анализ и синтез, индукция и дедукция;

3. формализация и конкретизация;

4. композиция и декомпозиция;

5. линеаризация и выделение нелинейных составляющих;

6. структурирование и реструктурирование;

7. макетирование;

8. реинжиниринг;

9. алгоритмизация;

10. моделирование и эксперимент;

11. программное управление и регулирование;

12. распознавание и идентификация;

13. кластеризация и классификация;

14. экспертное оценивание и тестирование;

15. верификация

16. и другие методы и процедуры.




Дата добавления: 2014-12-20; просмотров: 40 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.028 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав