Читайте также:
|
|
для студентов I курса стоматологического факультета
к практическому занятиюпо теме
«Применение пакета Statistica для анализа временных рядов»
1. Научно-методическое обоснование темы:
Нейронные сети - исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости. В частности, нейронные сети нелинейны по свой природе (смысл этого понятия подробно разъясняется далее в этой главе). На протяжение многих лет линейное моделирование было основным методом моделирования в большинстве областей, поскольку для него хорошо разработаны процедуры оптимизации. В задачах, где линейная аппроксимация неудовлетворительна (а таких достаточно много), линейные модели работают плохо. Кроме того, нейронные сети справляются с "проклятием размерности", которое не позволяет моделировать линейные зависимости в случае большого числа переменных.
Простота в использовании. Нейронные сети учатся на примерах. Пользователь нейронной сети подбирает представительные данные, а затем запускает алгоритм обучения, который автоматически воспринимает структуру данных. При этом от пользователя, конечно, требуется какой-то набор эвристических знаний о том, как следует отбирать и подготавливать данные, выбирать нужную архитектуру сети и интерпретировать результаты, однако уровень знаний, необходимый для успешного применения нейронных сетей, гораздо скромнее, чем, например, при использовании традиционных методов статистики. Нейронные сети привлекательны с интуитивной точки зрения, ибо они основаны на примитивной биологической модели нервных систем. В будущем развитие таких нейро-биологических моделей может привести к созданию действительно мыслящих компьютеров. Между тем уже "простые" нейронные сети, которые строит система ST Neural Networks, являются мощным оружием в арсенале специалиста по прикладной статистике.
2. Краткая теория:
Идея нейронных сетей в статистике разрабатывается не первое десятилетие. Как и любой другой статистический продукт, нейронные сети имеют свои ограничения. Их нецелесообразно использовать там, где достаточно односложные ответы можно получить, применяя дисперсионный, регрессионный, кластерный или факторный анализы, не говоря уже о первичной обработке данных – описательных приемах. Но в ситуациях, когда надо разгрести «завал» данных, получение осмысленного результата из которого проблематично, - тут-то нейронные сети и могут облегчить участь исследователя.
Основная идея нейронных сетей в том, что они механически повторяют структуру действительного нейрона (нервной клетки) мозга человека: эта клеточная структура имеет несколько отростков – входные - дендриты (их может быть несколько) и один выходной – аксон. Нейрон начинает передавать информацию через синапсы (узлы связи) другим нейронам только в случае, когда возбужден, или иначе, переполнен, информацией. Дозируя информацию, можно регулировать активность нейрона.
И на этом фоне удивительной чертой нейронных сетей является их способность к обучению, чего начисто лишены основные методы статистического анализа. В данном варианте реализуется действительная структура человеческого мозга: во-первых, принимать решение, опираясь на функцию памяти о прошлом опыте; во-вторых, действовать по ассоциации, используя обрывочные сведения о предмете анализа.
Систем обучения нейронных сетей достаточно много: У. Маккалоха, Д. Хебба, М. Минского, Дж. Хопфилда…
1. Откроем пакет, войдем в модуль Нейронные сети.
2. Через (Файл новый) выберем команду (Сеть).
3. На экране появится (Создать сеть)- (Create Network).
4. В поле (Тип) выбираем (Многослойный персептрон) и делаем установки: Вход=1, Выход=1.
5. Зададим число слоев сети равное трем, т.е. выбираем трехслойный персептрон.
6. Временное окно(Steps) пометим «12», это будет отвечать ежемесячной регистрации заболеваемости дизентерией с присущей сезонной составляющей.
7. Горизонт (Lookahead) пометим «1».
8. На экране монитора справа появится схема персептрона. Поскольку модель определена, необходимо сеть обучить. Для этого надо задать 66 обучающих (Training) и контрольных (Verification) наблюдений.
9. Далее перемешиваем данные (Shuffle), поскольку мы анализируем временный ряд, а порядок данных очень важен в соответствии с временными промежутками, то исключается использование кнопкой Сгруппировать (Group Sets).
10. Откроем командой Запуск окно Проекция временного ряда(Time Series Projection). Ряд можно построить целиком или с какого-то интересующего нас момента. Графически кривая идет достаточно круто вверх, число прогнозируемых случаев не имеет тенденции к снижению, колеблясь в пределах 1000,0 – 1020,0 на 10000 населения.
11. Проверим качество работы обученной сети, открыв окно Статистики регрессии, включим Запуск(Run).
12. Для того, чтобы получить прогноз на один шаг вперед в меню Запуск(Run) выберем команду (Single Case), откроется соответствующее диалоговое окно, где надо ввести номер наблюдения, для которого строится прогноз, жмем вверху справа кнопку (Run), в строке Output получим искомый результат прогноза. Введя для примера 13, получим прогнозируемый уровень 1011,231. Оценивая значимость входов, определим, что из четырех выбранных факторов ведущими (по величине объясненной дисперсии) является детская заболеваемость: 0,567 и оперативная эффективность: 0,451. Точность прогноза на среднем уровнен, что объясняется малым объемом обучающей выборки, и тем, что велика вероятность, что процесс по годам нестационарен.
3. Цель деятельности студентов на занятии:
Студент должен знать:
1. Основную структуру пакета Statistica 6.0 6.0.
2. Процесс ввода данных в таблицу Spreadsheet, сохранение файлов и открытие существующих.
3. Приемы описательной статистики.
4. Основные методы статистической обработки данных.
Студент должен уметь:
1.Владеть базовыми средствами для создания, редактирования, форматирования таблиц в пакете Statistica 6.0. В необходимой мере владеть навыком по осуществлению статистической обработки данных с применением современных программно-технических средств, в частности, с помощью возможностей данного пакета.
2.Эффективно использовать пакет Statistica 6.0 для более глубокого статистического исследования, с показателями корреляции, регрессии и описательной статистики.
3. Проводить анализ временных рядов с использованием пакета Statistica 6.0.(нейронные сети).
4. Содержание обучения:
1. Формирование таблиц. Ввод числовых и текстовых данных;
2. Сохранение файлов и открытие существующих.
3. Использование пакета анализа.
4. Получение прогноза динамики заболеваемости.
5. Перечень вопросов для проверки исходного уровня знаний:
1. Какую структуру имеет пакет Statistica 6.0?
2. Особенности пакета Statistica 6.0.
3. Как вводятся данные в таблицу пакета Statistica 6.0?
4. Как происходит статобработка данных?
6. Перечень вопросов для проверки конечного уровня знаний:
1. Понятие Нейронные сети.
2. Понятие персептрона.
3. Построение временного ряда.
7. Практическая часть:
Дан динамический ряд числа заболеваний дизентерией за год. Предварительно была сформирована помесячная таблица анализируемых реальных данных, она была сохранена на диске в конкретной папке. И выделены из 11 входящих четыре основные: 1) детская заболеваемость дизентерией, 2) число порывов на водоводной сети, 3) качество профилактической работы персонала в очагах, 4) оперативная эффективность. Необходимо получить прогноз динамики заболеваемости и определить, какой из четырех отобранных факторов является ведущим.
месяц | Заболеваемость детей дизентерией на 1000 чел. | Число порывов водоводной сети, абс. | Качество проф.работы в очагах, баллы | Оперативная эффективность, % | Число случаев дизентерии(в расчете на 10000 чел.) |
1. | 20,1 | 300,1 | |||
2. | 31,1 | 423,1 | |||
3. | 41,1 | 321,4 | |||
4. | 43,1 | 444,4 | |||
5. | 50,1 | 600,9 | |||
6. | 53,1 | 789,9 | |||
7. | 55,1 | 988,8 | |||
8. | 60,1 | 1012,1 | |||
9. | 60,1 | 1112,4 | |||
10. | 66,6 | 1123,3 | |||
11. | 67,1 | 1109,8 | |||
12. | 67,8 | 899,2 |
8. Хронокарта учебного занятия:
1.Организационный момент – 5 мин.
2.Текущий контроль знаний – 30 мин.
3.Разбор темы – 20 мин.
4.Практическая работа – 30 мин.
5.Подведение итогов занятия – 10 мин.
9. Самостоятельная работа студентов.
Использование многомерных статистических методов в статистической обработке медицинских данных.
10. Перечень учебной литературы к занятию:
1. Кобринский Б.А., Зарубина Т.В.
«Медицинская информатика», М., Издательский дом «Академия», 2009.
2. Жижин К.С. «Медицинская статистика», Высшее образование, 2007.
3. Лекция по данной теме.
II. Философия как специальность.
1. Проблемные границы философии.
1.1. Самоопределение философии. История слова φιλο-σοφία и его осмысления в древней Греции. Философия и софия, философия и софистика, философия и теория.
2. Философия, теория и наука.
2.1. Аристотель: "эпистема" и "нус"; универсальное определение философии как мышления о первоначалах мышления и бытия; «первая философия» и метафизика.
2.2. Декарт: философия как всеобщая методология теоретического знания; метафизические начала "натуральной философии" (механики).
2.3. Кант: принципиальный проблематизм первопринципов, философия как критическое само-ограничение теоретической метафизики;
2.4. Гегель: история философии как философия -- философия как историческая самокритика мысли;
2.5. XX век: кризис оснований и философия. Вопросы философии: не - "что мы можем знать?", а - "что значит знать?" и «что значит быть?»
2.6. Философия как мета-теория.
3. Философия и религия. Истина (открытость) и тайна (сокровенность) бытия. Загадка бытия, раскрываемая как философская спорность и переживаемая как толкуемая мистерия.
3.1. Августин («Исповедь», кн. X): философия как о-смысление сверх-мысленного;
3.2. Кузанский («Об ученом незнании»): апофатическое (отрицательное) богословие и апофатический смысл философии. С. Франк («Непостижимое»): мистика и критика. Вопрос о ничто. Вопрос философии: не - " есть ли бог?", а - "как возможно бытие бога?"
3.3. М. Хайдеггер («Феноменология и теология»). Критика онто-тео-логической структуры метафизики. Философский а-теизм.
3.4. Смысл границы между философией и богословием.
4. Философия и поэзия. Характер философской мысли и форма философского высказывания.
4.1. Гегель: предисловие к "Феноменологии духа", раздел IV, п. 1. Спекулятивное мышление. 4.2. Поэтика и логика философской речи: афоризм (Гераклит, Паскаль, Ницше); "разговор с собой", или "искусство диалектики" (Платон), схоластический диспут, спор метафизических начал XVII века (Декарт-Спиноза-Лейбниц…), "суд разума с самим собой"(Кант).
4.3. Многозначность слова и апорийность понятия (Аристотель, схоластика, вслушивание в слово-понятие у Канта, вслушивание в первослово у Хайдеггера…).
4.4. Философская система как поэтическое произведение. Лирическое средоточие философского ума (В. Библер. «От наукоучения к логике культуры», ч. 1, разд. 2, очерк 4. Спор начинают Теоретик, Поэт и Философ).
4.5. Граница, сообщающая и разделяющая философию и поэзию. Границы философии: философия как не-теория, не-религия, не-поэзия
5. История философии и философская ситуация современности.
5.1. Философская ситуация как историческая ситуация. Перекрестки мира (среди-земно-морье) и поворотные времена. Пограничность греческого мира-архипелага. Странническая и со-общающая природа философии. История европейской философии как расширяющаяся встреча мировых "софий": Афины, Александрия, Рим, арабская Испания, Флоренция… Нынешняя Европа как возможный форум мира.
5.2. Предельность и пограничность философской ситуации современности: современный мир как мир - глобальный, сообщенный (и в пространстве и во времени) - различных миров-культур. Замыкание в ментальном само-мнении и общение в само-сомнении философского ума.
5.3. Философские эпохи европейской истории - античность, средневековье, новое время, современность как со-временность (собрание времн-эпох) и как пост-нововременность. История философии как история единой философии. Современная философия и история философии (Гегель, Хайдеггер, Библер). Историчность настоящего философствования.
Литература.
1. Первоисточники.
Гераклит. Фрагменты (В кн.: Фрагменты ранних греческих философов. Часть I. От эпических теокосмогоний до воззрений атомистики. М. 1989. С.188-257).
Платон. "Апология Сократа", "Феаг", "Евтифрон", "Гиппий больший", "Протагор", «Алкивиад».
Аристотель. "Метафизика". Кн. I, гл. 1-6; Кн. IV, гл. 1-2; Кн. VI, гл. 1; Кн. VII, гл.1; Кн. XII, гл. 7. "Этика Никомахова". Кн. VI, гл. 7.
Августин. "Исповедь". Кн. I, гл. 1-6; кн. X-XII.
Фома Аквинский. Сумма теологии. М. 2006. Вопрос 1. О священном учении, каково оно и на что распространяется
Н. Кузанский. "Об ученом незнании". Кн. I, гл. 1-5. (Кузанский М. Соч. в 2-х томах. М. 1979. Т. 1. С. 50-57).
Р. Декарт. "Правила для руководства ума". Правила I-IV. "Рассуждение о методе". Ч. 1, 2.. «Размышления о первой философии»
И. Кант. (1) "Что такое просвещение?". (2) "Критика чистого разума". Часть II. Трансцендентальное учение о методе. Гл. вторая (Канон чистого разума) и третья (Архитектоника чистого разума). (3) Логика. (Пособие к лекциям 1800 г.) [В кн. Кант И. Трактаты и письма. М. «Наука». 1980]. Гл. III (Понятие философии вообще. - Философия по школьному понятию и по общему понятию. - Существенные потребности и цели философствования. - Самые общие и высшие задачи этой науки). См. также тексты, приводимые в кн. Н. Хинске. Между Просвещением и критикой разума. Этюды о корпусе логических работ Канта. М. 2007, Часть I. Гл. III, с. 45-81.
Г. Гегель. (1) Предисловие к "Феноменологии духа". (2) Введение в историю философии: "Лекции по истории философии". Кн. первая.
М. Хайдеггер. Что такое метафизика? и Основные понятия метафизики. // М. Хайдеггер. Что такое метафизика? М. 2007. С. 80-170.
2. Тематическая литература.
Вундт В. - Введение в философию. М. 1998.
Кюльпе О. Введение в философию. М. 2007
Ясперс К. Введение в философию. Минск. 2000
Мерло-Понти М. В защиту философии. (В кн.: Мерло-Понти М. В защиту философии. М. 1996. С. 6-47.
Ортега-и-Гассет Х. Что такое философия? (В кн. Ортега-и-Гассет Х. Что такое философия? М. 1991. С. 51-191).
Франк С. Л. Введение в философию, СПб., 1993.
Лосский Н. О. Введение в философию. Пг., 1918.
М.К.Мамардашвили. (1) "Как я понимаю философию". М. 1992. С. 14-72. (2) "Введение в философию". (В кн.: М.К.Мамардашвили. Необходимость себя. М.: "Лабиринт", 1996, с.7-154).
Хайдеггер М. Основные проблемы феноменологии. СПБ. 2001. Введение, § 2-3 (С. 5-18)
Ахутин А. В. "Дело философии". (В кн.: Ахутин А. В. Поворотные времена. СПБ. 2005. С. 22-87).
Библер В. С. (1) Что есть философия; (2) Быть философом; (3) История философии как философия. (В кн.: Библер В. С. На гранях логики культуры. М. 1997. С. 41-94.
3. Привлекаемая литература.
Паскаль Б. Мысли. (Разные издания). Раздел "Несоразмерность человека".
Кьеркегор С. Болезнь к смерти. Часть I. Кн. I-II. (В кн.: Кьеркегор С. Страх и трепет. М. 1993. С. 255-267).
Камю. А. Миф о сизифе (много изданий).
Марсель Г. Фундаментальная ситуация и пограничные ситуации у Карла Ясперса. //В кн.:
Марсель Г. Опыт конкретной философии. М. 2004. С. 170-197.
Достоевский Ф. М. Записки из подполья.
Толстой Л. Н. Смерть Ивана Ильича.
Шестов Л. На весах Иова. (В кн.: Шестов Л. Соч. в 2-х томах. Т. 2. М. 1993. С. 5- 148.
Бердяев Н. А. О рабстве и свободе человека. (В кн.: Бердяев Н. А. Царство Духа и Царство Кесаря. М.1995).
Гегель Г. Феноменология духа. Гл. IV. Разд. B. Свобода самосознания; стоицизм, скептицизм и несчастное сознание. (В кн.: Гегель Г. Собр. соч. Т. IV. Феноменология духа. М. 1959. С. 106-123). См. также Кожев А. Введение в чтение Гегеля. СПБ. 2003. Гл. II. Курс лекций 1934-35 уч. года. С. 71-89.
Хайдеггер М. Бытие и время. Первая глава. § 4. Онтическое преимущество бытийного вопроса. (В кн.: Хайдеггер М. Бытие и время. М. 1997. С. 11-15).
Бибихин В. В. (1) "Мир". Томск, 1995. (2) "Язык философии". М. 1993 (Переизд. СПБ. 2007).
Жан Бофре. Диалог с Хайдеггером. I. Греческая философия. СПБ. 2007; II. Новоевропейская философия. СПБ. 2007.
Ахутин А. В. Античные начала философии. СПБ. 2007. Ч. вторая. Гл. 1. Открытие философии. С. 278-287.
Библер В. С. От наукоучения к логике культуры. М. 1991. Гл. Разд. второй. Очерк четвертый. Спор начинают Теоретик, Поэт и Философ. С. 234-256.
Булгаков С. Н. Трагедия философии. (В кн.: Булгаков С. Н. Соч. в двух томах. Т. 1. М. 1993. С. 311-388).
Дата добавления: 2014-12-20; просмотров: 208 | Поможем написать вашу работу | Нарушение авторских прав |
<== предыдущая лекция | | | следующая лекция ==> |
МЕТОДИЧЕСКАЯ РАЗРАБОТКА | | | Теоретический минимум. Модуль 3. Карточка №1 |