Читайте также:
|
|
Если событие может наступить только при появлении одного из несовместных событий (гипотез)
, то вероятность события
вычисляется по формуле полной вероятности:
, где
- вероятность гипотезы
,
- условная вероятность события
при выполнении гипотезы
(
.
Проиллюстрируем формулу полной вероятности на графе с выделенной вершиной:
Полная вероятность события равна весу всего вероятностного графа с гипотезами.
С формулой полной вероятности тесно связана формула Байеса. Если до опыта вероятности гипотез были ,
,...,
, а в результате опыта появилось событие
, то с учетом этого события "новые", т.е. условные вероятности гипотез вычисляются по формуле Байеса
Формула Байеса дает возможность "пересмотреть" вероятность гипотез с учетом наблюдавшегося результата опыта. Условная вероятность может находиться как отношение веса ветви, проходящей через вершину, соответствующую гипотезе
, к весу всего вероятностного графа.
6. Случайные величины: дискретные и неприрывные. Закон распределения дискретной случайной величины
Случайная величина – это величина, значение которой зависит от случая, т.е. от элементарного события . Таким образом, случайная величина – это функция, определенная на пространстве элементарных событий
. Примеры случайных величин: количество гербов, выпавших при независимом бросании двух монет; число, выпавшее на верхней грани игрального кубика; число дефектных единиц продукции среди проверенных.
Определение случайной величины Х как функции от элементарного события , т.е. функции
, отображающей пространство элементарных событий
в некоторое множество Н, казалось бы, содержит в себе противоречие. О чем идет речь – о величине или о функции? Дело в том, что наблюдается всегда лишь т.н. «реализация случайной величины», т.е. ее значение, соответствующее именно тому элементарному исходу опыта (элементарному событию), которое осуществилось в конкретной реальной ситуации. Т.е. наблюдается именно «величина». А функция от элементарного события – это теоретическое понятие, основа вероятностной модели реального явления или процесса.
Отметим, что элементы Н – это не обязательно числа. Ими могут быть и последовательности чисел (вектора), и функции, и математические объекты иной природы, в частности, нечисловой (упорядочения и другие бинарные отношения, множества, нечеткие множества и др.) [2]. Однако наиболее часто рассматриваются вероятностные модели, в которых элементы Н – числа, т.е. Н = R1. В иных случаях обычно используют термины «случайный вектор», «случайное множество», «случайное упорядочение», «случайный элемент» и др.
Определение: Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.
Различают два вида случайных величин: дискретные и непрерывные.
Определение: Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.
Другими словами, возможные значения дискретной случайной величину можно перенумеровать.
Описать случайную величину можно с помощью ее закона распределения.
Определение: Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.
Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т.е.
x | x1 | x2 | х3 | … | хn |
p | р1 | р2 | р3 | ... | рn |
где р1+ р2+…+ рn=1
Такая таблица называется рядом распределения дискретной случайной величины. Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.
Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1)
Закон распределения дискретной случайной величины Х может быть также задан аналитически (в виде формулы):
P(X=xi)=φ(xi),i =1,2,3…n
Дата добавления: 2015-01-30; просмотров: 86 | Поможем написать вашу работу | Нарушение авторских прав |