Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Тема 2. Жесткость воды и методы ее устранения.

Читайте также:
  1. D. Прочие методы регулирования денежно-кредитной сферы
  2. I. АДМИНИСТРАТИВНЫЕ МЕТОДЫ УПРАВЛЕНИЯ ПРИРОДООХРАННОЙ ДЕЯТЕЛЬНОСТЬЮ
  3. I. Методы эмпирического исследования.
  4. I.4. МЕТОДЫ ИЗУЧЕНИЯ СПЕЦКУРСА
  5. II Биохимические методы
  6. II Методы очистки выбросов от газообразных загрязнителей.Метод абсорбции.
  7. II Методы очистки сточных вод от маслопродуктов.Принцип работы напорного гидроциклона.
  8. II. Методы теоретического познания.
  9. II. Раскрыть методы комплексной оценки хозяйственно-финансовой деятельности
  10. II. ЭКОНОМИЧЕСКИЕ МЕТОДЫ УПРАВЛЕНИЯ ПРИРОДООХРАННОЙ ДЕЯТЕЛЬНОСТЬЮ

Химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодиссоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых или катионов основных солей) и сопровож­дающееся изменением рН среды, называется гидролизом.

 

Пример 1. Составьте ионно-молекулярные и молекуляр­ные уравнения гидролиза солей: a) KCN, б) Nа2СО3, в) ZnSО4. Определите реакцию среды растворов этих солей.

Решение:

а) Цианид калия KCN - соль слабой одноосновной кисло­ты HCN и сильного основания КОН. При растворении в воде молекулы KCN полностью диссоциируют на катионы К+ и анионы CN-. Катионы К+ не могут связывать ионы ОН- воды, так как КОН — сильный электролит. Анионы CN- связывают ионы Н+ воды, образуя молекулы слабого элект­ролита HCN. Соль гидролизуется, как говорят, по аниону. Ионно-молекулярное уравнение гидролиза:

CN- + Н2О Û HCN + ОН-,

или в молекулярной форме:

KCN + H2O Û HCN + KOH

В результате гидролиза в растворе появляется некоторый избыток ионов ОН-, поэтому раствор KCN имеет щелочную реакцию (pH>7).

б) Карбонат натрия Na23 - соль слабой многоосновной кислоты и сильного основания. В этом случае анионы СО32-, связывая водородные ионы воды, образуют анионы кислой соли НСО3-, а не молекулы Н2СО3, так как ионы НСО3- диссоциируют гораздо труднее, чем молекулы Н2СО3. В обыч­ных условиях гидролиз идет по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза

СО32- + Н2О Û НСО3- + ОН-,

или в молекулярной форме

Na23 + H2O Û NaHCO3 + NaOH

В растворе появляется избыток ионов ОН-, поэтому раствор Na2CO3 имеет щелочную реакцию (рН> 7).

в) Сульфат цинка ZnSО4 - соль слабого многоосновного основания Zn(OH)2 и сильной кислоты H2SO4. В этом случае Zn2+ связывают гидроксидные ионы воды, образуя катионы основной соли ZnOH+. Образование молекул Zn(OH)2 не происходит, так как ионы ZnOН+ диссоциируют гораздо труднее, чем молекулы Zn(OH)2. В обычных условиях гидро­лиз идет по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза

Zn2+ + H2O Û ZnOH+ + Н+,

или в молекулярной форме

2ZnSО4 + 2H2O Û (ZnOH)24 + H24.

В растворе появляется избыток ионов водорода, поэтому ра­створ ZnSО4 имеет кислотную реакцию (рН<7).

 

Общая жесткость воды выражается суммой миллиграмм - эквивалентов ионов Са2+ и Мg2+ (иногда Fe2+), содержащихся в 1 л воды (мг-экв/л). Один миллиграмм-эквивалент жесткости отвечает содержанию 20,04 мг/л Са2+ или 12,16 Мg2+.

 

Пример 2. Определение общей жесткости воды по количеству содержащихся в воде солей. Рассчитайте общую жесткость воды (в мг-экв/л), если в 0,25 л воды содержится 16,20 мг гидрокарбоната кальция, 2,92 мг гидрокарбоната магния, 11,10 мг хлорида кальция и 9,50 мг хлорида магния.

Решение. Общая жесткость данного образца воды равна сумме временной и постоянной жесткости и обусловливается содержанием в ней солей, придающих ей жесткость.

Определяем эквивалентные массы солей обусловливающих жесткость воды (расчет эквивалентных масс через молекулярные массы (используя таблицу Менделеева)):

для Са(НСО3)2 Э = М/2 = (40+(1+12+16∙3)∙2)/2=162,11/2 = 81,05 г/моль;

для Mg(HCO3)2 Э = М/2 = 146,34/2 = 73,17 г/моль;

для CaCl2 Э = М/2 = 110,99/2 = 55,49 г/моль;

для MgCl2 Э = М/2 = 95,21/2 = 47,60 г/моль.

 

Жесткость воды Ж выражается в миллиграмм-эквивалентах двухзарядных катионов металлов Ca2+, Mg2+, Fe2+ и других или соответствующих им солей, содержащихся в 1 л воды:

…,

где m1, m2, m3 – содержание в воде двухзарядных катионов металлов (или соответствующих им солей), мг; Э1, Э2, Э3 – эквиваленты катионов металлов (или соответствующих им солей); V – объем воды, л.

 

мг-экв/л.

Пример 3. Сколько граммов CaSО4 содержится в 1 м3 воды, если ее жесткость, обусловленная присутствием этой соли, равна 4 мг-экв/л?

Решение. Мольная масса CaSО4 136,14 г/моль; эквивалентная масса равна 136,14/2=68,07 г/моль. В 1 м3 воды жесткостью 4 мг-экв/л содержится 4•1000= 4000 мг-экв, или 4000·68,07=272280 мг = 272,280 г CaSО4.

 

Пример 4. Определение временной и постоянной жесткости воды по количеству реагентов, необходимых для устранения жесткости. Для устранения общей жесткости по известково-содовому методу к 50 л воды добавлено 7,4 г Ca(OH)2 и 5,3 г Na2CO3. Рассчитайте временную и постоянную жесткость воды.

Решение. Добавление к воде Ca(OH)2 может устранить временную жесткость, а добавление Na2CO3 – постоянную жесткость. При добавлении этих реагентов к воде происходят следующие химические реакции:

Me(HCO3)2 + Ca(OH)2 = ¯MeCO3 + ¯CaCO3 + 2H2O

Me(NO3)2 + Na2CO3 = ¯MeCO3 + 2NaNO3

(Me2+: Ca2+, Mg2+, Fe2+ и др.)

Временная жесткость воды Жвр измеряется числом миллиграмм-эквивалентов гидроксида кальция, участвующего в реакции, а постоянная жесткость Жпост – числом миллиграмм-эквивалентов карбоната натрия:

Жвр = mCa(OH)2/(ЭCa(OH)2 V); Жпост = mNa2CO3/(ЭNa2CO3V);

ЭCa(OH)2 = М/2 = 74,09/2 = 37,04 г/моль;

ЭNa2CO3 = М/2 = 106,00/2 = 53,00 г/моль;

Жвр = 7400/(37,04·50) = 4 мг-экв/л;

Жпост = 5300/(53,00·50) = 2 мг-экв/л.

Общая жесткость воды равна

Жобщ = Жвр + Жпост = 4 + 2 = 6 мг-экв/л (вода средней жесткости).

 

Контрольные вопросы.

71. К раствору Nа2СО3 добавили cледующие вещества:

а) НСl, б) NaOH, в) Сu(NO3)2, г) K2S. В каких случаях гидролиз карбоната натрия усилится? Почему? Составьте молекулярные и ионно-молекулярные уравнения гидролиза соответствующих солей.

72. К раствору А12(SO4)3 добавили следующие вещества:

a) H2SO4, б) КОН, в) Na2SO3, г) ZnSO4. В каких случаях гидролиз сульфата алюминия усилится? Почему? Составьте молекулярные и ионно-молекулярные уравнения гидролиза соответствующих солей.

73. Какая из двух солей при равных условиях в большей степени подвергается гидролизу: FeCl3 или FeCl2? Почему? Составьте молекулярные и ионно-молекулярные уравнения гидролиза этих солей.

74. Какая из двух солей при равных условиях в боль­шей степени подвергается гидролизу: NaCN или NaClO? Почему? Составьте молекулярные и ионно-молекулярные уравнения гидролиза этих солей.

75. Какая из двух солей при равных условиях в большей степени подвергается гидролизу: MgCl2 или ZnCl2? Почему? Составьте молекулярные и ионно-молекулярные уравнения гидролиза этих солей.

76. Какая из двух солей при равных условиях в большей степени подвергается гидролизу: Na2CO3 или Na2SO3? По­чему? Составьте молекулярные и ионно-молекулярные урав­нения гидролиза этих солей.

77. К раствору FeCl3, добавили следующие вещества: а) НС1, б) КОН, в) ZnCl2, г) Na2CO3. В каких случаях гид­ролиз хлорида железа (III) усилится? Почему? Составьте молекулярные и ионно-молекулярные уравнения гидролиза соответствующих солей.

78. Присутствие каких солей обусловливает жесткость природной воды? Как можно устранить карбонатную и некарбонатную жесткость воды? Рассчитайте сколько граммов Са(НСО3)2 содержится в 1м3 воды, жесткость которой равна 3 мг-экв/л.

79. Определите карбонатную жесткость воды, в 1л которой содержится по 100 мг Са(НСО3)2, Mg(HCO3)2 и Fe(HCO3)2.

80. Сколько гашеной извести необходимо прибавить к 1 м3 воды, чтобы устранить ее временную жесткость, равную 7,2 мг-экв/л?

81. Устранение временной жесткости 100 л воды, вызванной присутствием Mg(HCO3)2, потребовало 4 г NaOH. Составить уравнение реакции и рассчитать, чему равна жесткость воды.

82. Определите жесткость воды, в литре которой содержится 0,324 г гидрокарбоната кальция. Сколько граммов соды нужно прибавить к 2 м3 этой воды для устранения ее жесткости?

83. В чем сущность ионитного способа устранения жесткости воды? Рассчитайте жесткость воды, содержащей в 1 л 0,005 моля гидрокарбоната кальция.

84. Жесткая вода содержит в литре 50 мг Са(НСО3)2 и 15 мг CaSO4. Сколько граммов карбоната натрия потребуется для устранения жесткости 1 м3 этой воды?

85. Некарбонатная жесткость воды равна 3,18 мг-экв/л. Какую массу Na3PO4 нужно добавить, чтобы умягчить 1 м3 воды?

86. Вычислите жесткость воды, если в литре воды содержится 202,5 мг Ca(HCO3)2 и 285 мг MgCl2.

87. Определить, чему равна жесткость воды, в 1 л которой содержится 240 мг MgSO4. Сколько граммов соды потребуется прибавить к 100 л этой воды для устранения жесткости?

88. Рассчитайте, сколько должна весить накипь, выпавшая при выпаривании 100 л воды, если жесткость обусловлена только присутствием гидрокарбоната кальция и равна 5 мг-экв/л?




Дата добавления: 2015-02-16; просмотров: 187 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав